生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 244-254.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1086
• 研究报告 • 上一篇
收稿日期:2024-11-07
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
晁跃辉,男,博士,教授,研究方向 :草类植物遗传育种;E-mail: chaoyuehui@bjfu.edu.cn作者简介:杨春,女,硕士研究生,研究方向 :草类植物遗传育种;E-mail: yclucky1215@163.com基金资助:
YANG Chun1(
), WANG Xiao-qian2, WANG Hong-jun2, CHAO Yue-hui1(
)
Received:2024-11-07
Published:2025-05-26
Online:2025-06-05
摘要:
目的 对蒺藜苜蓿(Medicago truncatula)MtZHD4基因进行克隆和表达特征分析,以深入了解其功能,为蒺藜苜蓿生长发育和植物内源激素合成、调控及信号传导等方面提供理论基础。 方法 以蒺藜苜蓿‘R108’为材料,克隆得到MtZHD4基因,对其进行生物信息学分析和亚细胞定位,利用实时荧光定量PCR技术对MtZHD4基因在不同组织、不同激素和胁迫处理下的表达模式进行分析。 结果 MtZHD4基因开放阅读框为1 092 bp,编码363个氨基酸,蛋白保守结构域预测发现MtZHD4含有2个ZF-HD蛋白结构域,分别属于ZF-HD dimmer和homeo ZF-HD超家族。亚细胞定位结果显示,MtZHD4定位于细胞核和细胞质。启动子顺式作用元件分析表明,MtZHD4基因启动子中含有参与植物生长发育、激素响应、光响应等多个顺式作用元件。组织特异性表达分析结果显示,MtZHD4基因在根中表达量最高,在叶和荚果中较低。经不同激素和胁迫处理后,MtZHD4基因的表达量在ABA诱导下出现上调趋势,IAA诱导下呈现下调趋势,在6-BA、MeJA和SA诱导下表现为先上升后下降;在盐胁迫下,MtZHD4基因的表达量呈上升趋势,而在干旱胁迫下,表达量则先上升后下降。 结论 MtZHD4基因对不同激素和非生物胁迫具有响应,可能通过相关激素信号转导调控蒺藜苜蓿的生长发育,并在盐和干旱胁迫下起正向调控作用。
杨春, 王晓倩, 王红军, 晁跃辉. 蒺藜苜蓿MtZHD4基因克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2025, 41(5): 244-254.
YANG Chun, WANG Xiao-qian, WANG Hong-jun, CHAO Yue-hui. Cloning, Subcellular Localization and Expression Analysis of MtZHD4 Gene from Medicago truncatula[J]. Biotechnology Bulletin, 2025, 41(5): 244-254.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| MtZHD4-F | ATGGAGCTGAGCAGCAGCCAGGACG |
| MtZHD4-R | TTAGGGGGTGGGCAGGTGGTTGGCG |
| 3302Y-F | TGACGCACAATCCCACTATCCT |
| 3302Y-R | CCGTCCAGCTCGACCAGGAT |
| MtZHD4-3302Y-F | CGGGGGACTCTTGACCATGGATGGAGCTGAGCAGCAGC |
| MtZHD4-3302Y-R | ACTAGTCAGATCTACCATGGTTAGGGGGTGGGCAGGTG |
| MtActin-F | TGATCTGGCTGGTCGTGACCTTA |
| MtActin-R | ATGCCTGCTGCTTCCATTCCTAT |
| MtZHD4-RT-F | CGGCGAGAAGGAGTGGTA |
| MtZHD4-RT-R | GCTTGATGGGCTTGTTGTT |
表1 引物序列
Table 1 Primer sequences
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| MtZHD4-F | ATGGAGCTGAGCAGCAGCCAGGACG |
| MtZHD4-R | TTAGGGGGTGGGCAGGTGGTTGGCG |
| 3302Y-F | TGACGCACAATCCCACTATCCT |
| 3302Y-R | CCGTCCAGCTCGACCAGGAT |
| MtZHD4-3302Y-F | CGGGGGACTCTTGACCATGGATGGAGCTGAGCAGCAGC |
| MtZHD4-3302Y-R | ACTAGTCAGATCTACCATGGTTAGGGGGTGGGCAGGTG |
| MtActin-F | TGATCTGGCTGGTCGTGACCTTA |
| MtActin-R | ATGCCTGCTGCTTCCATTCCTAT |
| MtZHD4-RT-F | CGGCGAGAAGGAGTGGTA |
| MtZHD4-RT-R | GCTTGATGGGCTTGTTGTT |
图1 MtZHD4基因克隆和构建的表达载体PCR检测以及同源蛋白序列分析A:蒺藜苜蓿MtZHD4基因的克隆;B:表达载体3302Y-MtZHD4的PCR检测;C:MtZHD4同源蛋白序列进化树
Fig. 1 Cloning of MtZHD4 gene and PCR detection of constructed expression vector as well as the sequence analysis of homologous proteinA: Cloning of MtZHD4 gene in Medicago truncatula. B: PCR detection of expression vector 3302Y-MtZHD4. C: Evolutionary tree of MtZHD4 homologous protein sequence
图2 MtZHD4同源蛋白多序列比对A:蒺藜苜蓿MtZHD4蛋白的保守基序分析(Mt:蒺藜苜蓿;Tp:红车轴草;Ps:豌豆;Vv:毛苕子;Ca:鹰嘴豆;Ap:相思子:Ss:密花豆;Vu:豇豆;Cc:木豆;Pa:银白杨;Tc:可可;Va:赤豆;Pn:黑杨;Pt:毛果杨);B:蒺藜苜蓿MtZHD4蛋白保守结构域的LOGO图;C:蒺藜苜蓿MtZHD4同源蛋白氨基酸序列比对
Fig. 2 Multiple sequence alignment of MtZHD4 homologous proteinsA: Conserved motif analysis of MtZHD4 protein in M. truncatula (Mt: M. truncatula; Tp: Trifolium pratense; Ps: Pisum sativum; Vv: Vicia villosa; Ca: Cicer arietinum;Ap: Abrus precatorius; Ss: Spatholobus suberectus; Vu: Vigna unguiculata;Cc: Cajanus cajan; Pa: Populus alba; Tc: Theobroma cacao; Va: Vigna angularis; Pn: Populus nigra; Pt: Populus trichocarpa). B: LOGO diagram of the conserved domain of MtZHD4 protein in M. truncatula. C: Amino acid sequence alignment of MtZHD4 homologous protein in M. truncatula
序号 No. | 基序序列 Sequence of motif | 基序长度 Width (aa) | 基序位点 Sites (bp) | 最大似然比 LLR | E值 E-value |
|---|---|---|---|---|---|
| 1 | VKVRYREKLKNEAAEKGGNAADGVGEFMPKGEEGVVZAL | 39 | 28 | 2 468 | 2.2e-720 |
| 2 | CQEIGVKRRVLKVWMHNNKHNLAKKNPPT | 29 | 14 | 1 112 | 2.0e-300 |
| 3 | NCSACHCHRNFHRKEVEGEPTSCD | 24 | 19 | 942 | 6.4e-207 |
| 4 | HNHIISSSAPALPSE | 15 | 42 | 804 | 1.6e-110 |
| 5 | MELSSQEGEIPIPJN | 15 | 13 | 451 | 5.7e-082 |
| 6 | SDEQEDGGGVV | 11 | 15 | 352 | 9.2e-051 |
表2 MtZHD4同源蛋白的保守基序
Table 2 Conserved motifs of MtZHD4 homologous proteins
序号 No. | 基序序列 Sequence of motif | 基序长度 Width (aa) | 基序位点 Sites (bp) | 最大似然比 LLR | E值 E-value |
|---|---|---|---|---|---|
| 1 | VKVRYREKLKNEAAEKGGNAADGVGEFMPKGEEGVVZAL | 39 | 28 | 2 468 | 2.2e-720 |
| 2 | CQEIGVKRRVLKVWMHNNKHNLAKKNPPT | 29 | 14 | 1 112 | 2.0e-300 |
| 3 | NCSACHCHRNFHRKEVEGEPTSCD | 24 | 19 | 942 | 6.4e-207 |
| 4 | HNHIISSSAPALPSE | 15 | 42 | 804 | 1.6e-110 |
| 5 | MELSSQEGEIPIPJN | 15 | 13 | 451 | 5.7e-082 |
| 6 | SDEQEDGGGVV | 11 | 15 | 352 | 9.2e-051 |
一级结构特征 Characteristics of primary structure | 预测结果 Predicted results |
|---|---|
| 氨基酸数量 Number of amino acids | 363 |
| 分子量 Molecular weight (Da) | 40 848.88 |
| 分子式 Molecular formula | C1764H2700N556O536S18 |
| 带正电荷残基总数 Total number of positively charged residues | 30 |
| 带负电荷残基总数 Total number of negatively charged residues | 31 |
| 不稳定指数 Instability coefficient | 60.41 |
| 脂溶系数 Aliphatic index | 56.45 |
| 总平均亲水性 Average hydrophobicity | -0.9 |
表3 蒺藜苜蓿MtZHD4蛋白理化性质
Table 3 Physicochemical properties of M. truncatula MtZHD4 protein
一级结构特征 Characteristics of primary structure | 预测结果 Predicted results |
|---|---|
| 氨基酸数量 Number of amino acids | 363 |
| 分子量 Molecular weight (Da) | 40 848.88 |
| 分子式 Molecular formula | C1764H2700N556O536S18 |
| 带正电荷残基总数 Total number of positively charged residues | 30 |
| 带负电荷残基总数 Total number of negatively charged residues | 31 |
| 不稳定指数 Instability coefficient | 60.41 |
| 脂溶系数 Aliphatic index | 56.45 |
| 总平均亲水性 Average hydrophobicity | -0.9 |
图3 MtZHD4蛋白结构与功能分析A:蛋白序列分析;B:蛋白二级结构(蓝色表示α-螺旋,紫色表示β-折叠,黄色表示无规则卷曲);C:蛋白三级结构(黄色带状代表蛋白主链,蓝色为ZF-HD结构域);D:跨膜结构分析;E:信号肽预测;F:亲疏水性预测;G:蛋白结构域预测
Fig. 3 Analysis of MtZHD4 protein structure and functionA: Protein sequence analysis. B: Secondary structure of protein (blue indicates α-helix, purple indicates β-sheet, and yellow indicates random coil). C: Tertiary structure of protein (the yellow ribbon indicates the protein backbone, and blue indicates the ZF-HD domain). D: Analysis of transmembrane structure analysis. E: Prediction of signal peptide. F: Prediction of hydrophobicity. G: Prediction of protein domain
图4 MtZHD4基因启动子顺式作用元件分析A:黑线表示MtZHD4基因的启动子长度,线条上的方块表示启动子区的顺式作用元件,图下方不同颜色的方框代表具有不同功能的顺式作用元件;B:左下方不同颜色方框代表与植物生长发育、激素响应、代谢和胁迫相关元件的数量,右下方不同颜色的长度条表示该基因作用元件所占比例
Fig. 4 Analysis of cis-acting elements in the MtZHD4 gene promoterA: The black line indicates the promoter length of MtZHD4 gene, and the boxes with different colors indicate cis-acting elements with different functions. B: The different color boxes at the bottom left indicate the number of elements related to plant growth and development, hormone response, metabolism and stress response, and the length bars of different colors on the bottom right indicate the proportion of cis-acting elements
图6 MtZHD4表达模式分析不同字母代表P<0.05时的显著差异,数值为平均值±SD(n=4)
Fig. 6 Expression pattern analysis of MtZHD4Different letters indicate significant differences at P<0.05. The values are in means ±SD (n=4)
| 1 | Glazebrook J. Genes controlling expression of defense responses in Arabidopsis—2001 status [J]. Curr Opin Plant Biol, 2001, 4(4): 301-308. |
| 2 | Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 2002, 5(5): 430-436. |
| 3 | Wang WL, Wu P, Li Y, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage [J]. Mol Genet Genomics, 2016, 291(3): 1451-1464. |
| 4 | Hu W, DePamphilis CW, Ma H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families [J]. J Integr Plant Biol, 2008, 50(8): 1031-1045. |
| 5 | Windhövel A, Hein I, Dabrowa R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia [J]. Plant Mol Biol, 2001, 45(2): 201-214. |
| 6 | Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes [J]. Mol Biol Evol, 2009, 26(12): 2775-2794. |
| 7 | Ariel FD, Manavella PA, Dezar CA, et al. The true story of the HD-zip family [J]. Trends Plant Sci, 2007, 12(9): 419-426. |
| 8 | Tan QKG, Irish VF. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development [J]. Plant Physiol, 2006, 140(3): 1095-1108. |
| 9 | Lai W, Zhu CX, Hu ZY, et al. Identification and transcriptional analysis of zinc finger-homeodomain (ZF-HD) family genes in cucumber [J]. Biochem Genet, 2021, 59(4): 884-901. |
| 10 | Wang H, Yin XJ, Li XQ, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L.) zinc finger-homeodomain gene family [J]. Int J Mol Sci, 2014, 15(4): 5730-5748. |
| 11 | Niu HL, Xia PL, Hu YF, et al. Genome-wide identification of ZF-HD gene family in Triticum aestivum: molecular evolution mechanism and function analysis [J]. PLoS One, 2021, 16(9): e0256579. |
| 12 | Xu Y, Wang YH, Long QZ, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice [J]. Planta, 2014, 239(4): 803-816. |
| 13 | Khatun K, Nath UK, Robin AHK, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato [J]. BMC Genomics, 2017, 18(1): 695. |
| 14 | Liu MY, Wang XX, Sun WJ, et al. Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Plant Biol, 2019, 19(1): 248. |
| 15 | Park HC, Kim ML, Lee SM, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter [J]. Nucleic Acids Res, 2007, 35(11): 3612-3623. |
| 16 | Perrella G, Davidson MLH, O'Donnell L, et al. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis [J]. Proc Natl Acad Sci USA, 2018, 115(19): E4503-E4511. |
| 17 | Tran LS P, Nakashima K, Sakuma Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis [J]. Plant J, 2007, 49(1): 46-63. |
| 18 | Ye QY, Zhou CE, Lin H, et al. Medicago2035: genomes, functional genomics and molecular breeding [J]. Mol Plant, 2024: S1674-2052(24)00399-X. |
| 19 | Nandety RS, Wen JQ, Mysore KS. Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation [J]. Fundam Res, 2023, 3(2): 219-224. |
| 20 | Figueiredo DD, Barros PM, Cordeiro AM, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B [J]. J Exp Bot, 2012, 63(10): 3643-3656. |
| 21 | Chen CJ, Wu Y, Li JW, et al. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining [J]. Mol Plant, 2023, 16(11): 1733-1742. |
| 22 | 谢宏, 李舒文, 董迪, 等. 蒺藜苜蓿MtDWF1基因克隆、亚细胞定位及表达特征分析 [J]. 草地学报, 2023, 31(4): 984-991. |
| Xie H, Li SW, Dong D, et al. Cloning, subcellular localization and expression pattern of MtDWF1 gene in Medicago truncatula [J]. Acta Agrestia Sin, 2023, 31(4): 984-991. | |
| 23 | Liu MD, Liu H, Liu WY, et al. Systematic analysis of zinc finger-homeodomain transcription factors (ZF-HDs) in barley (Hordeum vulgare L.) [J]. Genes, 2024, 15(5): 578. |
| 24 | Bueso E, Muñoz-Bertomeu J, Campos F, et al. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for Gibberellins in seed longevity [J]. Plant Physiol, 2014, 164(2): 999-1010. |
| 25 | 雷艳芳. 蒺藜苜蓿遗传图谱的构建及种子产量相关性状的遗传分析 [D]. 兰州: 甘肃农业大学, 2009. |
| Lei YF. Construction of genetic map of Medicago truncatula and genetic analysis of seed yield-related traits [D]. Lanzhou: Gansu Agricultural University, 2009. | |
| 26 | 庞丹丹, 刘玉飞, 田易萍, 等. 茶树ZF-HD转录因子基因家族的鉴定及表达分析 [J]. 南方农业学报, 2021, 52(3): 632-640. |
| Pang DD, Liu YF, Tian YP, et al. Identification and expression analysis of ZF-HD transcription factor gene family in Camellia sinensis [J]. J South Agric, 2021, 52(3): 632-640. | |
| 27 | Sun JH, Xie MM, Li XX, et al. Systematic investigations of the ZF-HD gene family in tobacco reveal their multiple roles in abiotic stresses [J]. Agronomy, 2021, 11(3): 406. |
| 28 | Hong SY, Kim OK, Kim SG, et al. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis [J]. J Biol Chem, 2011, 286(2): 1659-1668. |
| 29 | 时丕彪, 王德领, 蒋润枝, 等. 藜麦ZF-HD转录因子的全基因组鉴定及其对盐胁迫的响应分析 [J]. 江苏农业学报, 2022, 38(2): 304-312. |
| Shi PB, Wang DL, Jiang RZ, et al. Genome-wide identification of ZF-HD transcription factors and expression analysis of response to salt stress in quinoa [J]. Jiangsu J Agric Sci, 2022, 38(2): 304-312. | |
| 30 | Guo YQ, Zhu C, Zhao SS, et al. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar ‘Tieguanyin’ compared with cultivar ‘Benshan’ [J]. BMC Genomics, 2019, 20(1): 265. |
| 31 | 张晋玉, 晁毛妮, 杜弘杨, 等. 大豆ZF-HD转录因子GmZHD1的克隆及表达分析 [J]. 华北农学报, 2017, 32(2): 1-7. |
| Zhang JY, Chao MN, Du HY, et al. Cloning and expression analysis of ZF-HD transcription factor GmZHD1 in Glycine max [J]. Acta Agric Boreali Sin, 2017, 32(2): 1-7. | |
| 32 | 吴国江, 周伟, 李艳肖, 等. 高粱ZF-HD基因家族鉴定与盐碱胁迫下的表达分析 [J]. 浙江农业学报, 2024, 36(6): 1217-1231. |
| Wu GJ, Zhou W, Li YX, et al. Identification and expression analysis under saline-alkali stress of ZF-HD gene family in sorghum [J]. Acta Agric Zhejiangensis, 2024, 36(6): 1217-1231. | |
| 33 | 付鸿博, 李杰, 杨永超, 等. 石榴ZF-HD基因家族鉴定与分析 [J]. 河南农业科学, 2022, 51(6): 119-125. |
| Fu HB, Li J, Yang YC, et al. Identification and analysis of the ZF-HD gene family in Punica granatum [J]. J Henan Agric Sci, 2022, 51(6): 119-125. | |
| 34 | He K, Li CX, Zhang ZY, et al. Genome-wide investigation of the ZF-HD gene family in two varieties of alfalfa (Medicago sativa L.) and its expression pattern under alkaline stress [J]. BMC Genomics, 2022, 23(1): 150. |
| 35 | Zhou CZ, Zhu C, Xie SY, et al. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis) [J]. Sci Hortic, 2021, 281: 109976. |
| 36 | Shan XY, Yan JB, Xie DX. Comparison of phytohormone signaling mechanisms [J]. Curr Opin Plant Biol, 2012, 15(1): 84-91. |
| 37 | Xu XR, Zhou H, Yang QH, et al. ZF-HD gene family in rapeseed (Brassica napus L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses [J]. BMC Genomics, 2024, 25(1): 1181. |
| [1] | 李志强, 罗正乾, 徐琳黎, 周国慧, 屈丝雨, 刘恩良, 顼东婷. 基于T2T基因组鉴定大豆R2R3-MYB基因家族及干旱和盐胁迫下的表达分析[J]. 生物技术通报, 2025, 41(5): 141-152. |
| [2] | 宋慧洋, 苏宝杰, 李京昊, 梅超, 宋倩娜, 崔福柱, 冯瑞云. 马铃薯StAS2-15基因的克隆及盐胁迫下功能分析[J]. 生物技术通报, 2025, 41(5): 119-128. |
| [3] | 何卫, 李俊怡, 李新妮, 马雪华, 邢媛, 曹晓宁, 乔治军, 刘思辰. 谷子泛素连接酶U-box E3基因家族的鉴定及响应非生物胁迫分析[J]. 生物技术通报, 2025, 41(5): 104-118. |
| [4] | 王田田, 常雪瑞, 黄婉洋, 黄嘉欣, 苗如意, 梁燕平, 王静. 辣椒GASA基因家族的鉴定及分析[J]. 生物技术通报, 2025, 41(4): 166-175. |
| [5] | 班秋艳, 赵鑫月, 迟文静, 黎俊生, 王琼, 夏瑶, 梁丽云, 贺巍, 李叶云, 赵广山. 茶树光敏色素互作因子CsPIF3a的克隆及其与光温逆境的响应[J]. 生物技术通报, 2025, 41(4): 256-265. |
| [6] | 卢勇杰, 夏海乾, 李永铃, 张文建, 余婧, 赵会纳, 王兵, 许本波, 雷波. 烟草AP2/ERF转录因子NtESR2的克隆及功能分析[J]. 生物技术通报, 2025, 41(4): 266-277. |
| [7] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [8] | 刘涛, 王志淇, 吴文博, 石文婷, 王超楠, 杜崇, 杨中敏. 马铃薯GRAM基因家族鉴定与表达分析[J]. 生物技术通报, 2025, 41(4): 145-155. |
| [9] | 覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160. |
| [10] | 王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170. |
| [11] | 宋姝熠, 蒋开秀, 刘欢艳, 黄亚成, 刘林娅. ‘红阳’猕猴桃TCP基因家族鉴定及其在果实中的表达分析[J]. 生物技术通报, 2025, 41(3): 190-201. |
| [12] | 钱祺, 王增辉, 孙荣华, 罗英智, 苏良辰. 花生蛋白磷酸酶AhPDCP37的抗旱性功能研究[J]. 生物技术通报, 2025, 41(3): 98-103. |
| [13] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [14] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
| [15] | 李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||