生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 312-325.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0053
贾雪1,2(
), 隋丽2, 邹晓威2, 路杨2, 张正坤2(
), 李启云1,2(
)
收稿日期:2025-01-14
出版日期:2025-07-26
发布日期:2025-07-22
通讯作者:
张正坤,男,博士,研究员,研究方向 :生防微生物研究与利用;E-mail: zhangzhengkun1980@126.com作者简介:贾雪,女,硕士研究生,研究方向 :生防微生物;E-mail: 864032152@qq.com
基金资助:
JIA Xue1,2(
), SUI Li2, ZOU Xiao-wei2, LU Yang2, ZHANG Zheng-kun2(
), LI Qi-yun1,2(
)
Received:2025-01-14
Published:2025-07-26
Online:2025-07-22
摘要:
目的 通过明确真菌病毒beauveria bassiana orthocurvula virus 1(BbOCuV1)对寄主球孢白僵菌(Beauveria bassiana)生长发育和对害虫的致病力的影响,研究真菌病毒是否是导致球孢白僵菌致病力下降的关键因素。 方法 采用脱毒和水平传毒方法比较研究BbOCuV1对寄主球孢白僵菌菌落生长速率、产孢量和生物量的影响,并测定了寄主球孢白僵菌对亚洲玉米螟(Ostrinia furnacalis)二龄幼虫的致病力。利用转录组分析,揭示了真菌病毒影响寄主菌株的分子机制。 结果 感染BbOCuV1后,寄主菌株生长速率、产孢量和生物量均显著提高,但对亚洲玉米螟二龄幼虫的致病力显著降低。转录组分析显示,感染病毒后的白僵菌菌株生长发育相关通路和基因表达量显著提高,但与昆虫表皮穿透和毒素代谢相关的基因表达降低。 结论 感染BbOCuV1病毒后的球孢白僵菌,其生长发育及生物量明显增强,但对害虫致病力降低。说明真菌病毒感染是引起球孢白僵菌对害虫致病力下降的重要因素。
贾雪, 隋丽, 邹晓威, 路杨, 张正坤, 李启云. 真菌病毒BbOCuV1对寄主球孢白僵菌生长发育和亚洲玉米螟致病力的影响[J]. 生物技术通报, 2025, 41(7): 312-325.
JIA Xue, SUI Li, ZOU Xiao-wei, LU Yang, ZHANG Zheng-kun, LI Qi-yun. Effects of the Mycovirus BbOCuV1 on the Growth and Development of Host Beauveria bassiana and Its Pathogenicity to Ostrinia furnacalis Larvae[J]. Biotechnology Bulletin, 2025, 41(7): 312-325.
引物名称 Primer name | 序列 Sequence (5′-3′) | 片段大小 Fragment size (bp) |
|---|---|---|
| dsRNA1-F1 | CCTTCCTCCGGTCACTGAACC | 1 419 |
| dsRNA1-F2 | GGTGGTGCTAAAGCTAAGGTGTCG | 1 419 |
| dsRNA1-R1 | CGCGCTCAGTCTTGCCAT | 1 085 |
| dsRNA1-R2 | GTCAACAGACCTACAACCGACACC | 1 085 |
| dsRNA2-F1 | GCGCAGGTGGGAGGACA | 1 019 |
| dsRNA2-F2 | ATCCAGCCATCATCGCGC | 1 019 |
| dsRNA2-R1 | CCTGACCGAACAAATGCTCACC | 935 |
| dsRNA2-R2 | CCATCGGTGCGGACGG | 935 |
表1 序列扩增引物
Table 1 Primers for sequence amplification
引物名称 Primer name | 序列 Sequence (5′-3′) | 片段大小 Fragment size (bp) |
|---|---|---|
| dsRNA1-F1 | CCTTCCTCCGGTCACTGAACC | 1 419 |
| dsRNA1-F2 | GGTGGTGCTAAAGCTAAGGTGTCG | 1 419 |
| dsRNA1-R1 | CGCGCTCAGTCTTGCCAT | 1 085 |
| dsRNA1-R2 | GTCAACAGACCTACAACCGACACC | 1 085 |
| dsRNA2-F1 | GCGCAGGTGGGAGGACA | 1 019 |
| dsRNA2-F2 | ATCCAGCCATCATCGCGC | 1 019 |
| dsRNA2-R1 | CCTGACCGAACAAATGCTCACC | 935 |
| dsRNA2-R2 | CCATCGGTGCGGACGG | 935 |
图1 球孢白僵菌BbOCuV1和BbOCuV1-F菌株dsRNA 提取及 RT-PCR 检测结果A:各泳道为BbOCuV1菌株dsRNA提取检测结果,“+”为DNase I和S1核酸酶处理的dsRNA;“-”为未经过酶处理的dsRNA。B:各泳道为BbOCuV1菌株RT-PCR检测;“+”为RT-PCR检测阳性对照;“-”为 RT-PCR检测阴性对照
Fig. 1 dsRNA extraction and RT-PCR detection of Beauveria bassiana strain BbOCuV1A: Each lane indicates the test result of dsRNA extraction in strain BbOCuV1; "+" is dsRNA treated with DNase I and S1 nuclease; "-" is the dsRNA without enzymatic treatment. B: Each lane indicates the RT-PCR detection for strain BbOCuV1; "+" is a positive control for RT-PCR; and "-" is a negative control for RT-PCR and BbOCuV1-F
图2 球孢白僵菌BbOFDHOCuV和BbOFDH1-5-GFP菌株dsRNA提取及RT-PCR检测结果A:BbOFDHOCuV菌株dsRNA提取检测结果;“+”为DNase I和S1核酸酶处理的dsRNA;“-”为未经过酶处理的dsRNA。B:BbOFDHOCuV菌株RT-PCR检测;“+”为RT-PCR检测阳性对照;“-”为 RT-PCR检测阴性对照
Fig. 2 dsRNA extraction and RT-PCR detection of B. bassiana strain BbOFDHOCuV and BbOFDH1-5-GFPA: dsRNA extraction test result in strain BbOFDHOCuV; "+"is dsRNA treated with DNase I and S1 nuclease; "-" is the dsRNA without enzymatic treatment. B: RT-PCR detection for strain BbOFDHOCuV; "+" is a positive control for RT-PCR, and "-" is a negative control for RT-PCR
图3 球孢白僵菌接种在PDA培养基上的菌落形态及生长速度A:BbOFDHOCuV和BbOFDH菌株菌落形态;B:BbOCuV1和BbOCuV1-F菌株菌落形态;C:BbOFDHOCuV和BbOFDH菌株生长速度;D:BbOCuV1和BbOCuV1-F菌株生长速度;**P<0.01;***P<0.001,下同
Fig. 3 Colony morphologies and growth rates of B. bassiana inoculated on PDA mediumA: Colony morphology of strain BbOFDHOCuV and BbOFDH; B: colony morphology of strain BbOCuV1and BbOCuV1-F strains; C: growth rates of BbOFDHOCuV and BbOFDH strains; D: growth rates of BbOCuV1 and BbOCuV1-F strains. ** indicates P<0.01; *** indicates P<0.001, the same below
图5 菌株单位面积产孢量A:获毒菌株单位面积产孢量;B:脱毒菌株单位面积产孢量
Fig. 5 Strain's sporulation yield per unit areaA: Sporulation yield per unit area of the toxified strain. B: Sporulation yield per unit area of the detoxified strain
图6 球孢白僵菌菌株生物量的测定A:获毒菌株生物量测定;B:脱毒菌株生物量测定
Fig. 6 Determination of the biomass of B. bassiana strainsA: Biomass measurement of the toxified strains. B: Biomass measurement of detoxified strains
图7 2龄亚洲玉米螟8 d内存活率A:获毒菌株2龄亚洲玉米螟8 d内存活率;B:脱毒菌株2龄亚洲玉米螟8 d内存活率;*P<0.05
Fig. 7 Survival rates of 2-instar O. furnacalis within 8 dA: Survival rate of 2-instar Ostrinia furnacalis larvae infected with toxified strains B: Survival rate of 2-instar O. furnacalis larvae infected with detoxified strains;*P<0.05
图8 RNA-Seq数据的转录组谱A:无病毒组和BbOCuV1组的主成分分析;B:使用log2倍变化和log10p值绘制RNA-Seq数据的火山图。红点和绿点分别表示上调和下调的基因,蓝点表示没有显著表达的基因
Fig. 8 Transcriptome profile of RNA-Seq dataA: Principal component analysis of virus-free and BbOCuV1 groups; B: Volcano plot of RNA-Seq data using log2 fold change and log10p-value. Red and green dots denote up- and down-regulated genes, respectively, and blue dots indicate genes with no significant expression
图9 DEGs的GO和KEGG富集分析A:上调基因的GO富集分析;B:下调基因的GO富集分析;C:上调基因的KEGG富集分析;D:下调基因的KEGG富集分析
Fig. 9 GO and KEGG enrichment analyses of DEGsA: GO enrichment analysis of upregulated genes. B: GO enrichment analysis of downregulated genes. C: KEGG enrichment analysis of upregulated genes. D: KEGG enrichment analysis of downregulated genes
| Gene ID | Padj |
|---|---|
| BBA_00890 | 5.05031204527094e-37 |
| BBA_01635 | 5.19645125134483e-05 |
| BBA_02155 | 7.19194419245941e-06 |
| BBA_01808 | 4.57389790420523e-12 |
| BBA_02822 | 1.45371968945862e-07 |
| BBA_04028 | 0.00497034986646022 |
| BBA_08424 | 2.58045865685601e-06 |
| BBA_08699 | 0.00121775638944784 |
| BBA_03616 | 0.00170577409824362 |
| BBA_04374 | 8.74503508574553e-20 |
| BBA_07338 | 1.08247806189268e-12 |
| BBA_09043 | 5.05031204527094e-37 |
| BBA_00611 | 4.4575588085647e-05 |
| BBA_00635 | 0.000102945242727946 |
| BBA_00702 | 1.47055069946437e-23 |
| BBA_02264 | 0.00174335718176381 |
| BBA_09043 | 5.05031204527094e-37 |
表2 差异基因Padj值
Table 2 Padj values of differential genes
| Gene ID | Padj |
|---|---|
| BBA_00890 | 5.05031204527094e-37 |
| BBA_01635 | 5.19645125134483e-05 |
| BBA_02155 | 7.19194419245941e-06 |
| BBA_01808 | 4.57389790420523e-12 |
| BBA_02822 | 1.45371968945862e-07 |
| BBA_04028 | 0.00497034986646022 |
| BBA_08424 | 2.58045865685601e-06 |
| BBA_08699 | 0.00121775638944784 |
| BBA_03616 | 0.00170577409824362 |
| BBA_04374 | 8.74503508574553e-20 |
| BBA_07338 | 1.08247806189268e-12 |
| BBA_09043 | 5.05031204527094e-37 |
| BBA_00611 | 4.4575588085647e-05 |
| BBA_00635 | 0.000102945242727946 |
| BBA_00702 | 1.47055069946437e-23 |
| BBA_02264 | 0.00174335718176381 |
| BBA_09043 | 5.05031204527094e-37 |
| [1] | Ding BK, Ma SJ, Yang ML, et al. Rational design of azo-aminopyrimidine derivatives as the potent Lepidoptera-exclusive chitinase inhibitors [J]. Plant Biotechnol J, 2025, 23(3): 780-791. |
| [2] | Runno-Paurson E, Mäeorg E, Kurina O, et al. Erratum to: widespread occurrence of European corn borer (Ostrinia nubilalis) and damage of industrial hemp (Cannabis sativa) crop in northern Europe [J]. J Crop Health, 2024, 76(2): 445. |
| [3] | Krismawati A, Yustisia Y, Arifin Z, et al. A bibliometric analysis of biopesticides in corn pest management: Current trends and future prospects [J]. Heliyon, 2024, 10(22): e40196. |
| [4] | Kary NE, Alizadeh Z, Dunphy G. Evolutionary distinction between the geographical isolates of Beauveria bassiana from Iran and their efficacy against Helicoverpa armigera [J]. Int J Trop Insect Sci, 2022, 42(3): 2083-2092. |
| [5] | Wu JH, Li JY, Zhang C, et al. Biological impact and enzyme activities of Spodoptera litura (Lepidoptera: Noctuidae) in response to synergistic action of matrine and Beauveria brongniartii [J]. Front Physiol, 2020, 11: 584405. |
| [6] | Fan JH, Xie YP, Xue JL, et al. The effect of Beauveria brongniartii and its secondary metabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis [J]. J Insect Sci, 2013, 13: 44. |
| [7] | Goble TA, Costet L, Robene I, et al. Beauveria brongniartii on white grubs attacking sugarcane in South Africa [J]. J Invertebr Pathol, 2012, 111(3): 225-236. |
| [8] | Mascarin GM, Jaronski ST. The production and uses of Beauveria bassiana as a microbial insecticide [J]. World J Microbiol Biotechnol, 2016, 32(11): 177. |
| [9] | López Plantey R, Papura D, Couture C, et al. Characterization of entomopathogenic fungi from vineyards in Argentina with potential as biological control agents against the European grapevine moth Lobesia botrana [J]. BioControl, 2019, 64(5): 501-511. |
| [10] | Bhunjun CS, Chen YJ, Phukhamsakda C, et al. What are the 100 most cited fungal Genera? [J]. Stud Mycol, 2024, 108: 1-411. |
| [11] | Mseddi J, Ben Farhat-Touzri D, Azzouz H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae) [J]. Pest Manag Sci, 2022, 78(6): 2183-2195. |
| [12] | Eivazian Kary N, Alizadeh Z. Effects of sub-culturing on genetic and physiological parameters in different Beauveria bassiana isolates [J]. J Invertebr Pathol, 2017, 145: 62-67. |
| [13] | Rajanikanth P, Subbaratnam GV, Rahaman SJ. Effect of frequency of subculturing of different isolates of Beauveria bassiana vuillemin on their biological properties [J]. IJBSM, 2011, 2 (1): 60-65. . |
| [14] | Vidhate RP, Dawkar VV, Punekar SA, et al. Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis [J]. Microb Ecol, 2023, 85(1): 49-60. |
| [15] | Zhang ZK, Lu Y, Xu WJ, et al. RNA sequencing analysis of Beauveria bassiana isolated from Ostrinia furnacalis identifies the pathogenic genes [J]. Microb Pathog, 2019, 130: 190-195. |
| [16] | Zhang ZK, Lu Y, Xu WJ, et al. Influence of genetic diversity of seventeen Beauveria bassiana isolates from different hosts on virulence by comparative genomics [J]. BMC Genomics, 2020, 21(1): 451. |
| [17] | Fernandes ÉKK, Rangel DEN, Braga GUL, et al. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation [J]. Curr Genet, 2015, 61(3): 427-440. |
| [18] | Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, et al. Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana [J]. J Invertebr Pathol, 2010, 105(3): 270-278. |
| [19] | Ortiz-Urquiza A, Luo ZB, Keyhani NO. Improving mycoinsecticides for insect biological control [J]. Appl Microbiol Biotechnol, 2015, 99(3): 1057-1068. |
| [20] | Lemke PA, Nash CH. Fungal viruses [J]. Bacteriol Rev, 1974, 38(1): 29-56. |
| [21] | Krstin L, Katanić Z, Repar J, et al. Genetic diversity of Cryphonectria hypovirus 1, a biocontrol agent of chestnut blight, in Croatia and Slovenia [J]. Microb Ecol, 2020, 79(1): 148-163. |
| [22] | Qu Z, Fu YP, Lin Y, et al. Transcriptional responses of Sclerotinia sclerotiorum to the infection by SsHADV-1 [J]. J Fungi, 2021, 7(7): 493. |
| [23] | Hollings M. Viruses associated with A die-back disease of cultivated mushroom [J]. Nature, 1962, 196: 962-965. |
| [24] | Van Alfen NK, Jaynes RA, Anagnostakis SL, et al. Chestnut blight: biological control by transmissible hypovirulence in Endothia parasitica [J]. Science, 1975, 189(4206): 890-891. |
| [25] | Ghabrial SA, Castón JR, Jiang DH, et al. 50-plus years of fungal viruses [J]. Virology, 2015, 479/480: 356-368. |
| [26] | Qu Z, Zhao HZ, Zhang HX, et al. Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed [J]. NPJ Biofilms Microbiomes, 2020, 6(1): 45. |
| [27] | Zhang H, Xie J, Fu Y, et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement [J]. Mol Plant, 2020, 13(10): 1420-1433. |
| [28] | Yu X, Li B, Fu YP, et al. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide [J]. Proc Natl Acad Sci USA, 2013, 110(4): 1452-1457. |
| [29] | Kotta-Loizou I, Coutts RHA. Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence [J]. PLoS Pathog, 2017, 13(1): e1006183. |
| [30] | Filippou C, Diss RM, Daudu JO, et al. The polymycovirus-mediated growth enhancement of the entomopathogenic fungus Beauveria bassiana is dependent on carbon and nitrogen metabolism [J]. Front Microbiol, 2021, 12: 606366. |
| [31] | Kang Q, Ning SY, Sui L, et al. Transcriptomic analysis of entomopathogenic fungus Beauveria bassiana infected by a hypervirulent polymycovirus BbPmV-4 [J]. Fungal Biol, 2023, 127(3): 958-967. |
| [32] | Dalzoto PR, Glienke-Blanco C, Kava-Cordeiro V, et al. Horizontal transfer and hypovirulence associated with double-stranded RNA in Beauveria bassiana [J]. Mycol Res, 2006, 110(Pt 12): 1475-1481. |
| [33] | Xu M, Liu H, Jia X, et al. The complete genome sequences of a negative single-stranded RNA virus and a double-stranded RNA virus coinfecting the entomopathogenic fungus Beauveria bassiana Vuillemin [J]. Arch Virol, 2024, 169(3): 42. |
| [34] | Morris TJ. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue [J]. Phytopathology, 1979, 69(8): 854. |
| [35] | Li P, Liu D, Yu BX, et al. Leaf spot of Acorus calamus var. angustatus Caused by Alternaria alternata in Anhui Province, China [J]. Plant Dis, 2024. |
| [36] | Tiago PV, Fungaro MHP, de Faria MR, et al. Effects of double-stranded RNA in Metarhizium anisopliae var. acridum and Paecilomyces fumosoroseus on protease activities, conidia production, and virulence [J]. Can J Microbiol, 2004, 50(5): 335-339. |
| [37] | Tong S, Yuan M, Liu Y, et al. Ergosterol-targeting fusion antifungal peptide significantly increases the Verticillium wilt resistance of cotton [J]. Plant Biotechnol J, 2021, 19(5): 926-936. |
| [38] | Zhang Z, Guo W, Lu Y, et al. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field [J]. Virol J, 2023, 20(1): 255. |
| [39] | Jiang Q, Jing Q, Ren B, et al. Culture supernatant of Enterococcus faecalis promotes the hyphal morphogenesis and biofilm formation of Candida albicans [J]. Pathogens, 2022, 11(10): 1177. |
| [40] | Ding JL, Lin HY, Feng MG, et al. Mbp1, a component of the MluI cell cycle box-binding complex, contributes to morphological transition and virulence in the filamentous entomopathogenic fungus Beauveria bassiana [J]. Environ Microbiol, 2020, 22(2): 584-597. |
| [41] | Sui L, Lu Y, Xu MN, et al. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens [J]. Virulence, 2024, 15(1): 2401978. |
| [42] | Yue Z, Li XR, Zhang EY, et al. A potential and novel type transgenic corn plant for control of the Corn Borer [J]. Sci Rep, 2017, 7: 44105. |
| [43] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550. |
| [44] | Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. Genome Biol, 2010, 11(2): R14. |
| [45] | Zhu H, Fu J, Wang H, et al. Fitness consequences of oviposition choice by an herbivorous insect on a host plant colonized by an endophytic entomopathogenic fungus [J]. J Pest Sci, 2023, 96(2): 745-758. |
| [46] | Darissa O, Adam G, Schäfer W. A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize [J]. Eur J Plant Pathol, 2012, 134(1): 181-189. |
| [47] | Santos V, Mascarin GM, da Silva Lopes M, et al. Identification of double-stranded RNA viruses in Brazilian strains of Metarhizium anisopliae and their effects on fungal biology and virulence [J]. Plant Gene, 2017, 11: 49-58. |
| [48] | Okada R, Ichinose S, Takeshita K, et al. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity [J]. Virology, 2018, 519: 23-32. |
| [49] | Kirk Harris J, Gregory Caporaso J, Walker JJ, et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat [J]. ISME J, 2013, 7(1): 50-60. |
| [50] | Quesada-Moraga E, Vey A. Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana strains and effects of in vivo and in vitro passage on these factors [J]. Biocontrol Sci Technol, 2003, 13(3): 323-340. |
| [51] | Ortiz-Urquiza A, Keyhani NO. Action on the surface: entomopathogenic fungi versus the insect cuticle [J]. Insects, 2013, 4(3): 357-374. |
| [52] | Peng YJ, Hou J, Zhang H, et al. Systematic contributions of CFEM domain-containing proteins to iron acquisition are essential for interspecies interaction of the filamentous pathogenic fungus Beauveria bassiana [J]. Environ Microbiol, 2022, 24(8): 3693-3704. |
| [53] | Zhang SZ, Widemann E, Bernard G, et al. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana [J]. J Biol Chem, 2012, 287(16): 13477-13486. |
| [54] | Fang WG, Leng B, Xiao YH, et al. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence [J]. Appl Environ Microbiol, 2005, 71(1): 363-370. |
| [55] | Valero-Jiménez CA, Wiegers H, Zwaan BJ, et al. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana [J]. J Invertebr Pathol, 2016, 133: 41-49. |
| [56] | Pedrini N, Zhang SZ, Patricia Juárez M, et al. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana [J]. Microbiology, 2010, 156(Pt 8): 2549-2557. |
| [57] | Wang P, Yang GG, Shi NJ, et al. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus [J]. PLoS Pathog, 2023, 19(5): e1011397. |
| [58] | Fan YH, Ortiz-Urquiza A, Kudia RA, et al. A fungal homologue of neuronal calcium sensor-1, Bbcsa1, regulates extracellular acidification and contributes to virulence in the entomopathogenic fungus Beauveria bassiana [J]. Microbiology, 2012, 158(Pt 7): 1843-1851. |
| [59] | Xu YQ, Orozco R, Kithsiri Wijeratne EM, et al. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana [J]. Chem Biol, 2008, 15(9): 898-907. |
| [60] | Wang CS, Wang SB. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements [J]. Annu Rev Entomol, 2017, 62: 73-90. |
| [1] | 张吉昌, 许云凤, 蒋凌雁. 柱花草内生细菌ZW21发酵条件优化及其抑菌物质稳定性测定[J]. 生物技术通报, 2025, 41(5): 280-289. |
| [2] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
| [3] | 刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297. |
| [4] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
| [5] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
| [6] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
| [7] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
| [8] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
| [9] | 丁艳哲, 姚鑫鑫, 孙卓, 杨利民, 韩忠明, 王云贺. 刺五加黑斑病生防细菌分离、鉴定、优选及发酵条件优化[J]. 生物技术通报, 2024, 40(12): 218-226. |
| [10] | 马云涛, 胡丽娜, 孙文婧, 唐莲庚, 孙思远, 邓欣雨, 孙黎. 梨火疫病拮抗菌JK2的筛选鉴定及发酵条件优化[J]. 生物技术通报, 2024, 40(11): 202-213. |
| [11] | 叶柳健, 贺愉岚, 王小虎, 韦圣博, 何双, 朱绮霞, 卢洁, 周礼芹. 解淀粉芽孢杆菌YK3对沃柑溃疡病的防效及叶际细菌群落相关性的影响[J]. 生物技术通报, 2024, 40(11): 248-258. |
| [12] | 李希, 边子俊, 宁周神, 刘红雨, 曾槟, 董伟. 离子型稀土矿根际芽孢杆菌的促生作用研究[J]. 生物技术通报, 2024, 40(11): 259-268. |
| [13] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
| [14] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
| [15] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||