生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 226-234.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0160
范宗强(), 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳()
收稿日期:
2024-02-18
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
陈芳,女,博士,教授,研究方向:微生物与生化药学;E-mail: chenfang20045@163.com作者简介:
范宗强,男,硕士研究生,研究方向:微生物与生化药学;E-mail: 577472410@qq.com
基金资助:
FAN Zong-qiang(), FENG Jing-han, ZHENG Li-xue, WANG Shuo, PENG Xiang-qian, CHEN Fang()
Received:
2024-02-18
Published:
2024-07-26
Online:
2024-07-30
摘要:
【目的】 探究枯草芽孢杆菌B579对黄瓜枯萎病菌的生防效果及诱导抗性机理。【方法】 采用平板对峙试验和温室盆栽试验,检测病原菌生长及形态变化、植物生长量、叶片防御酶活性、丙二醛含量、防御相关基因表达量等指标。【结果】 枯草芽孢杆菌B579对黄瓜枯萎病菌具有较强的抑制作用,抑菌圈周围菌丝出现粗细不均、膨胀、断裂等现象。盆栽试验表明B579对黄瓜枯萎病的防治效果为78.80%。B579处理组黄瓜幼苗的株高、茎粗、鲜重、干重分别比对照组增加了13.87%、4.17%、15.15%、12.77%。相比单独接种病原菌(FOC)处理,接种 B579 再接种病原菌(B579+FOC)处理在第4天和第7天显著提高了黄瓜叶片苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,并减少黄瓜叶片丙二醛(MDA)的含量(P<0.05)。实时荧光定量PCR 检测结果表明,接种 B579 再接种病原菌后,黄瓜叶片防御相关基因LOX、PR1、PR3和CAT表达量在第4天和第7天显著高于其他处理(P<0.05)。【结论】 枯草芽孢杆菌B579能够通过直接抑制病原菌生长和使黄瓜产生诱导抗性来有效防治黄瓜枯萎病。
范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234.
FAN Zong-qiang, FENG Jing-han, ZHENG Li-xue, WANG Shuo, PENG Xiang-qian, CHEN Fang. Study on the Control and Induced Resistance in Cucumber with Bacillus subtilis B579 against Cucumber Fusarium Wilt[J]. Biotechnology Bulletin, 2024, 40(7): 226-234.
基因Gene | 基因序列Sequence(5'-3') | 登录号Accession number | 参考文献Reference |
---|---|---|---|
ACTIN | F: TGGACTCTGGTGATGGTGTTA | DQ641117 | [ |
R:CAATGAGGGATGGCTGGAAAA | |||
LOX | F:GAGAGCGTAAGGAATGGGATAGAA | NM_001305708 | [ |
R: CACCGGGTTCGGAAAGG | |||
PR1 | AACTCTGGCGGACCTTAC | DQ641122 | [ |
GACTTCCTCCACACTACT | |||
PR3 | GCCTTACTCCATAACATCACTCC | DQ641104 | [ |
GATTTCGATATCGAGTCTGGCT | |||
CAT | AACCCAACCCAAAATCCCA | GU248529 | [ |
TCTAATAGCCTCCTCTTCCAGCA |
表1 实时定量PCR反应的引物信息
Table 1 Primer information for the real-time quantitative PCR reaction
基因Gene | 基因序列Sequence(5'-3') | 登录号Accession number | 参考文献Reference |
---|---|---|---|
ACTIN | F: TGGACTCTGGTGATGGTGTTA | DQ641117 | [ |
R:CAATGAGGGATGGCTGGAAAA | |||
LOX | F:GAGAGCGTAAGGAATGGGATAGAA | NM_001305708 | [ |
R: CACCGGGTTCGGAAAGG | |||
PR1 | AACTCTGGCGGACCTTAC | DQ641122 | [ |
GACTTCCTCCACACTACT | |||
PR3 | GCCTTACTCCATAACATCACTCC | DQ641104 | [ |
GATTTCGATATCGAGTCTGGCT | |||
CAT | AACCCAACCCAAAATCCCA | GU248529 | [ |
TCTAATAGCCTCCTCTTCCAGCA |
图1 B579发酵液对病原菌生长的影响 数据为平均值±标准偏差,柱形图不同小写字母表示不同处理之间具有显著差异(P<0.05);下同
Fig. 1 Effect of B579 fermentation broth on the growth of pathogen Data are mean ± SE,different small letters on the bar chart indicate significant differences between each treatment group and the control group(P<0.05);the same below
图2 光学显微镜下对照组(A)和处理组(B, C)病原菌菌丝的形态 A: 菌丝折叠; B: 菌丝膨胀; C: 菌丝破裂
Fig. 2 Mycelium morphology of pathogens in control group(A)and treatment group(B, C)under optical microscope A: Mycelium folding; B: hyphal expansion; C: hyphal rupture
组别 Treatment | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|
CK | 0c | - |
B579 | 0c | - |
B579+FOC | 11.12±2.41b | 78.80% |
FOC | 52.78±4.81a | - |
表2 B579处理对黄瓜枯萎病的防治效果
Table 2 Control effect of B579 treatment on cucumber Fusarium wilt
组别 Treatment | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|
CK | 0c | - |
B579 | 0c | - |
B579+FOC | 11.12±2.41b | 78.80% |
FOC | 52.78±4.81a | - |
组别Treatment | 株高Plant height/cm | 茎粗Stem diameter/mm | 鲜重Fresh weight/g | 干重Dry weight/g |
---|---|---|---|---|
CK | 9.95±1.30b | 4.80±0.39b | 9.11±1.07b | 0.47±0.06b |
B579 | 11.33±0.79a | 5.00±0.57a | 10.49±0.87a | 0.53±0.06a |
B579+FOC | 9.32±0.62b | 4.66±0.45b | 7.98±0.76c | 0.42±0.07b |
FOC | 7.42±1.10d | 3.97±0.58c | 6.41±1.19d | 0.33±0.07d |
表3 不同处理对黄瓜幼苗生长的影响
Table 3 Effects of different treatments on cucumber seedling growth
组别Treatment | 株高Plant height/cm | 茎粗Stem diameter/mm | 鲜重Fresh weight/g | 干重Dry weight/g |
---|---|---|---|---|
CK | 9.95±1.30b | 4.80±0.39b | 9.11±1.07b | 0.47±0.06b |
B579 | 11.33±0.79a | 5.00±0.57a | 10.49±0.87a | 0.53±0.06a |
B579+FOC | 9.32±0.62b | 4.66±0.45b | 7.98±0.76c | 0.42±0.07b |
FOC | 7.42±1.10d | 3.97±0.58c | 6.41±1.19d | 0.33±0.07d |
[1] | Liu HJ, Yuan BZ, Hu XD, et al. Cucumber production and the economic revenues under various nitrogen applications in an unheated solar greenhouse on the North China Plain[J]. Agron J, 2021, 113(4): 3444-3459. |
[2] |
陈梦多, 胡春艳, 马肖静, 等. 植物根际细菌HQ1-2的根际定殖与土壤微生态调节及枯萎病防治[J]. 中国生物防治学报, 2023, 39(4): 924-932.
doi: 10.16409/j.cnki.2095-039x.2023.02.034 |
Chen MD, Hu CY, Ma XJ, et al. Rhizosphere colonization of plant growth promoting rhizobacteria HQ1-2 and regulation effects of soil microecology and control effects on the Fusarium wilt[J]. Chin J Biol Contr, 2023, 39(4): 924-932. | |
[3] | Liu X, Zhang Y. Exploring the communities of bacteria, fungi and ammonia oxidizers in rhizosphere of Fusarium-diseased greenhouse cucumber[J]. Appl Soil Ecol, 2021, 161: 103832. |
[4] | Zhang XZ, Meng XH, Jiao XD, et al. Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology[J]. 3 Biotech, 2024, 14(4): 97. |
[5] | Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review[J]. Physiol Mol Plant Pathol, 2022, 117: 101754. |
[6] | Romanazzi G, Sanzani SM, Bi Y, et al. Induced resistance to control postharvest decay of fruit and vegetables[J]. Postharvest Biol Technol, 2016, 122: 82-94. |
[7] | Vlot AC, Sales JH, Lenk M, et al. Systemic propagation of immunity in plants[J]. New Phytol, 2021, 229(3): 1234-1250. |
[8] | Sabbagh SK, Roudini M, Panjehkeh N. Systemic resistance induced by Trichoderma harzianum and Glomus mossea on cucumber damping-off disease caused by Phytophthora melonis[J]. Arch Phytopathol Plant Prot, 2017, 50(7-8): 375-388. |
[9] | Chowdhury SP, Uhl J, Grosch R, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Mol Plant Microbe Interact, 2015, 28(9): 984-995. |
[10] | 田松, 乔宏宇, 郭小哲, 等. 4种药剂对黄瓜幼苗2, 4-D丁酯药害的缓解作用[J]. 东北农业科学, 2022, 47(3): 134-137. |
Tian S, Qiao HY, Guo XZ, et al. Alleviating effects of four pesticides on the damage of 2, 4-D butyl ester in cucumber seedlings[J]. J Northeast Agric Sci, 2022, 47(3): 134-137. | |
[11] | Najafi M, Esfahani MN, Vatandoost J, et al. Antioxidant enzymes activity associated with resistance to Phytophthora melonis-pumpkin blight[J]. Physiol Mol Plant Pathol, 2024, 129: 102192. |
[12] | 吕敏, 卫甜, 刘怀阿, 等. 昆虫取食和机械损伤对棉花和玉米脂氧合酶活性的诱导作用[J]. 江苏农业科学, 2021, 49(10): 86-90. |
Lü M, Wei T, Liu HA, et al. Insect feeding and mechanical damage induce lipoxygenase activity in cotton and corn[J]. Jiangsu Agric Sci, 2021, 49(10): 86-90. | |
[13] | Fan YJ, He XJ, Dai JW, et al. Induced resistance mechanism of Bacillus velezensis S3-1 against pepper wilt[J]. Curr Microbiol, 2023, 80(12): 367. |
[14] | Rashad YM, Abdalla SA, Sleem MM. Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against Rhizoctonia root rot[J]. Plants, 2022, 11(15): 2051. |
[15] | 柴凤兰, 郑晨, 张帆. 枯草芽孢杆菌在农作物种植上的应用研究进展[J]. 南方农业, 2023, 17(5): 152-156. |
Chai FL, Zheng C, Zhang F. Research progress on the application of Bacillus subtilis in crop planting[J]. South China Agric, 2023, 17(5): 152-156. | |
[16] | 谢晓佩, 王琦, 孔新平, 等. 西藏牦牛源枯草芽孢杆菌的分离培养及鉴定[J]. 家畜生态学报, 2021, 42(3): 26-31. |
Xie XP, Wang Q, Kong XP, et al. Isolation, culture and identification of Bacillus subtilis from yak in Tibet[J]. J Domest Anim Ecol, 2021, 42(3): 26-31. | |
[17] | 徐洪宇, 孙兴权, 张强, 等. 枯草芽孢杆菌有机肥对土壤条件及烤烟产质量的影响[J]. 湖南农业科学, 2017(7): 55-58, 64. |
Xu HY, Sun XQ, Zhang Q, et al. Effects of Bacillus subtilis organic fertilizer on soil conditions, yield and quality of flue-cured tobacco[J]. Hunan Agric Sci, 2017(7): 55-58, 64. | |
[18] | 王进, 高鹏, 黄天悦, 等. 产聚谷氨酸菌株的筛选及其发酵物对辣椒生长及产量的影响[J]. 河南农业科学, 2018, 47(11): 56-60. |
Wang J, Gao P, Huang TY, et al. Screening of strain producing γ-polyglutamic acid and effect of its fermentation products on growth and yield of pepper[J]. J Henan Agric Sci, 2018, 47(11): 56-60. | |
[19] | 武亚芬, 向丹, 梁斌, 等. 番茄枯萎病拮抗菌KCKB1的分离、鉴定及生防效果[J]. 江苏农业科学, 2023, 51(9): 131-139. |
Wu YF, Xiang D, Liang B, et al. Isolation and identification of antagonist bacteria Bacillus subtilis KCKB1 and its biological control effect against tomato Fusarium wilt[J]. Jiangsu Agric Sci, 2023, 51(9): 131-139. | |
[20] | 陈静宇, 孟利强, 曹旭, 等. 马铃薯微生物菌剂的应用效果及对根际土壤微生物的影响[J]. 现代化农业, 2017(7): 11-12. |
Chen JY, Meng LQ, Cao X, et al. Application effect of potato microbial inoculum and its influence on rhizosphere soil microorganisms[J]. Mod Agric, 2017(7): 11-12. | |
[21] | 闫杨, 刘月静, 李晓静, 等. 生防芽孢杆菌对半夏根际土壤酶活性及产量的影响[J]. 聊城大学学报: 自然科学版, 2018, 31(3): 99-105. |
Yan Y, Liu YJ, Li XJ, et al. Effect of biocontrol Bacillus strains on enzyme activities in rhizosphere soil and yield of Pinellia terna-ta[J]. J Liaocheng Univ Nat Sci Ed, 2018, 31(3): 99-105. | |
[22] | Pu XM, Xie BY, Li PQ, et al. Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20[J]. FEMS Microbiol Lett, 2014, 355(2): 142-151. |
[23] | Zhuang HR, Liu XY, Ma H, et al. Growth and physiological-biochemical characteristics of cucumber(Cucumis sativus L.) in the presence of different microplastics[J]. Arab J Geosci, 2023, 16(3): 194. |
[24] | Wang H, Jiang YP, Yu HJ, et al. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants[J]. Eur J Plant Pathol, 2010, 127(1): 125-135. |
[25] |
Sang MK, Kim KD. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber[J]. Phytopathology, 2011, 101(6): 732-740.
doi: 10.1094/PHYTO-10-10-0287 pmid: 21281115 |
[26] | Zhang HJ, Zhang N, Yang RC, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber(Cucumis sativus L.)[J]. J Pineal Res, 2014, 57(3): 269-279. |
[27] | Lian H, Li RZ, Ma GS, et al. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt[J]. Sci Rep, 2023, 13(1): 17606. |
[28] |
Pickett JA, Khan ZR. Plant volatile-mediated signalling and its application in agriculture: successes and challenges[J]. New Phytol, 2016, 212(4): 856-870.
doi: 10.1111/nph.14274 pmid: 27874990 |
[29] | Han SY, Chen JX, Zhao YJ, et al. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum[J]. Pestic Biochem Physiol, 2021, 178: 104916. |
[30] | 张婉菊, 谢太震, 陈梦多, 等. 根际细菌LK2-3对黄瓜枯萎病的生物防治作用[J]. 中国瓜菜, 2022, 35(7): 25-30. |
Zhang WJ, Xie TZ, Chen MD, et al. Biocontrol effect of rhizosphere bacteria LK2-3 against Fusarium wilt of cucumber[J]. China Cucurbits Veg, 2022, 35(7): 25-30. | |
[31] | 虞凡枫, 赵进, 孙铭悦, 等. 黄瓜枯萎病拮抗芽孢杆菌A7-3-14的筛选及鉴定[J]. 北方园艺, 2022(3): 41-46. |
Yu FF, Zhao J, Sun MY, et al. Screening and identification of antagonistic Bacillus A7-3-14 in cucumber Fusarium wilt[J]. North Hortic, 2022(3): 41-46. | |
[32] |
张林林, 沈虎生, 杨冰, 等. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023, 39(12): 209-218.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0407 |
Zhang LL, Shen HS, Yang B, et al. Control ability and identification of biocontrol agent HK11-9 against Corynespora leaf spot of cucumber[J]. Biotechnol Bull, 2023, 39(12): 209-218. | |
[33] | Saleem D, Zuhra Z, Akhtar W, et al. Salicylic acid and H2O2 induce PPO derived GUS expression in Arabidopsis[J]. Russ J Plant Physiol, 2020, 67: 822-826. |
[34] | 吴梦露, 李鹏, 于文清, 等. 水稻防御酶与其抗病性关系研究进展[J]. 分子植物育种, 2024, 22(7): 2413-2420. |
Wu ML, Li P, Yu WQ, et al. Advances in the research of relationship between defensive enzymes and disease resistance in rice[J]. Mol Plant Breed, 2024, 22(7): 2413-2420. | |
[35] | Li YL, Gu YL, Li J, et al. Biocontrol agent Bacillus amyloliquefa-ciens LJ02 induces systemic resistance against cucurbits powdery mildew[J]. Front Microbiol, 2015, 6: 883. |
[36] | 项佳胤, 商桑, 田丽波. 贝莱斯芽孢杆菌N46对苦瓜白粉病的防治机理研究[J]. 热带作物学报, 2023, 23: 1-17. |
Xiang JY, Shang S, Tian LB. Study on the control mechanism of Bacilus velezensis N46 against powdery mildew of bittel melon[J]. Chinese Journal of Tropical Crops, 2023, 23: 1-17. | |
[37] | Jain C, Gupta S, Sharma SP, et al. Effect of Fusarium wilt on proteinaceous content and pathogenesis-related proteins in Cucumis melo[J]. Biologia, 2023, 78(11): 3329-3338. |
[38] |
Cutt JR, Harpster MH, Dixon DC, et al. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene[J]. Virology, 1989, 173(1): 89-97.
doi: 10.1016/0042-6822(89)90224-9 pmid: 2815592 |
[39] | 孙锦涛, 谢旻皓, 徐辉, 等. 几丁质酶在农作物免疫防御中的应用研究进展[J]. 粮食科技与经济, 2023, 48(2): 114-120. |
Sun JT, Xie MH, Xu H, et al. Research progress on the application of chitinase in crops immune defense[J]. Food Sci Technol Econ, 2023, 48(2): 114-120. | |
[40] | Du NS, Shi L, Yuan YH, et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiol Res, 2017, 202: 1-10. |
[1] | 杜仲阳, 杨泽, 梁梦静, 刘义珍, 崔红利, 史达明, 薛金爱, 孙岩, 张春辉, 季春丽, 李润植. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应[J]. 生物技术通报, 2024, 40(7): 183-196. |
[2] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[3] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[4] | 王佳玮, 李晨, 刘建利, 周世杰, 易嘉敏, 杨谨源, 康鹏. 内生真菌接种方式对青贮玉米幼苗生长的影响[J]. 生物技术通报, 2024, 40(4): 189-202. |
[5] | 高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227. |
[6] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
[7] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[8] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[9] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[10] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[11] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[12] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[13] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[14] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[15] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||