生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 287-297.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0719
刘倩1,2(), 马连杰2(
), 张慧2, 王冬2, 范茂1,2, 廖敦秀2, 赵正武1(
), 卢文才2
收稿日期:
2024-07-26
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
赵正武,男,博士,研究员,研究方向:水稻遗传育种;E-mail: zhaozhengwu513@sina.com;作者简介:
刘倩,女,硕士,研究方向:生防微生物;E-mail: 1902786362@qq.com
基金资助:
LIU Qian1,2(), MA Lian-jie2(
), ZHANG Hui2, WANG Dong2, FAN Mao1,2, LIAO Dun-xiu2, ZHAO Zheng-wu1(
), LU Wen-cai2
Received:
2024-07-26
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】筛选和鉴定一种具有防治辣椒炭疽病能力的生防菌株,评估其防治效果,并探究其对辣椒果实抗病活性物质的影响及其抑菌物质的稳定性。【方法】将从土壤样品中分离出的单一菌株通过平板对峙试验和辣椒离体生防试验进行筛选,最终获得一株拮抗效果显著的细菌菌株。对其进行形态学分析、生理生化特性分析及16S rRNA序列测定分析鉴定,并测定其接种后辣椒内丙二醛(MDA)含量、防御酶活性以及抑菌活性物质的稳定性。【结果】在平板拮抗试验中,TN2菌株对尖孢炭疽菌(Colletotrichum acutatum)有强烈的抑制作用,抑菌率达70%以上。同时,通过离体生防试验验证,TN2处理后辣椒植株的病情指数显著低于阳性对照组。综合菌株TN2的形态学、生理生化特征以及16S rRNA序列系统进化树分析,鉴定TN2为贝莱斯芽胞杆菌。TN2能够增强过氧化物酶(peroxidase, POD)、超氧化物歧化酶(superoxide dismutase, SOD)、丙氨酸解氨酶(phenylalnine ammonialyase, PAL)、过氧化氢酶(catalase, CAT)活性,使MDA含量相对阳性对照处理减少,且在不同处理下,其抑菌物质相对稳定。【结论】贝莱斯芽胞杆菌TN2菌株具有良好的防治辣椒炭疽病的潜力,可作为一种有效的生防菌株应用于辣椒炭疽病的生物防治中,具有重要的实际应用价值。
刘倩, 马连杰, 张慧, 王冬, 范茂, 廖敦秀, 赵正武, 卢文才. 辣椒炭疽病生防菌株TN2的筛选鉴定与抑菌效果[J]. 生物技术通报, 2025, 41(1): 287-297.
LIU Qian, MA Lian-jie, ZHANG Hui, WANG Dong, FAN Mao, LIAO Dun-xiu, ZHAO Zheng-wu, LU Wen-cai. Screening, Identification and Control Effects of Biocontrol Strain TN2 against Pepper Anthracnose[J]. Biotechnology Bulletin, 2025, 41(1): 287-297.
菌株编号 Strain number | 菌落直径 Colony diameter/mm | 抑菌率 Antibacterial rate/% |
---|---|---|
TN2 | 15.54±0.14e | 71.23±0.26a |
CB2 | 16.4±0.21d | 67.91±2.36b |
BSJ4 | 18.65±0.11c | 64.62±0.96c |
BSJ12 | 19.4±0.16b | 61.48±2.22d |
YC8 | 21.36±0.27a | 60.44±0.49d |
表1 拮抗菌株对辣椒尖孢炭疽菌的拮抗作用
Table 1 Antagonism of antagonistic strains against Colle-totrichum acutatum
菌株编号 Strain number | 菌落直径 Colony diameter/mm | 抑菌率 Antibacterial rate/% |
---|---|---|
TN2 | 15.54±0.14e | 71.23±0.26a |
CB2 | 16.4±0.21d | 67.91±2.36b |
BSJ4 | 18.65±0.11c | 64.62±0.96c |
BSJ12 | 19.4±0.16b | 61.48±2.22d |
YC8 | 21.36±0.27a | 60.44±0.49d |
测试项目 Test item | 特征 Characteristic | 测试项目 Test item | 特征 Characteristic | |
---|---|---|---|---|
接触酶 | + | MR | - | |
氧化酶 | + | 葡萄糖产酸 | + | |
明胶液化 | + | 葡萄糖产气 | - | |
V-P | + | 蔗糖产酸 | + | |
pH 5.5 | + | 蔗糖产气 | - | |
20% NaCl | + | 吲哚乙酸 | + | |
50℃生长温度 | + | 固氮 | + | |
淀粉水解 | + | 解磷 | - |
表2 菌株TN2的生理生化特征
Table 2 Physiological and biochemical characteristics of strain TN2
测试项目 Test item | 特征 Characteristic | 测试项目 Test item | 特征 Characteristic | |
---|---|---|---|---|
接触酶 | + | MR | - | |
氧化酶 | + | 葡萄糖产酸 | + | |
明胶液化 | + | 葡萄糖产气 | - | |
V-P | + | 蔗糖产酸 | + | |
pH 5.5 | + | 蔗糖产气 | - | |
20% NaCl | + | 吲哚乙酸 | + | |
50℃生长温度 | + | 固氮 | + | |
淀粉水解 | + | 解磷 | - |
图4 菌株TN2挥发性有机物及无菌滤液对炭疽病原菌的抑制(标尺:5 mm) A:菌株TN2挥发性有机物对炭疽菌的抑制作用;C:菌株TN2无细胞滤液对炭疽菌的抑制作用;B、D:炭疽菌菌落(CK)
Fig. 4 Inhibition of VOCs and cell-free filtrate of strain TN2 to C. capsici(scale: 5 mm) A: Inhibition of strain TN2 VOCs against anthracnose. C: Inhibition of strain TN2 cell-free filtrate against anthracnose. B, D: Anthrax colonies(CK)
图5 菌株TN2在PDA平板上对7种植物病原菌的拮抗作用(标尺:5 mm) A1-G1为处理组,A2-G2为对照组;A:尖孢镰刀菌;B:辣椒枯萎病菌;C:茄镰刀菌;D:灰葡萄孢菌;E:大丽轮枝菌;F:核盘菌;G:芒果囊孢菌
Fig. 5 Inhibitory effect of strain TN2 on 7 plant pathogens on PDA plate(scale: 5 mm) A1-G1 is the treatment group, and A2-G2 is the control group. A: Fusarium oxysporum; B: Fusarium annuum; C: Haematonectria; D: Botrytis cinerea; E: Verticillium dahliae;F: Sclerotinia sclerotiorum; G: Guignardia
病原菌 Pathogen | 菌落直径 Colony diameter/mm | 抑菌率 Antibacterial rate/% |
---|---|---|
尖孢镰刀菌Fusarium oxysporum | 34.47±0.77a | 53.92±1.26e |
辣椒枯萎病菌Fusarium annuum | 29.05±0.27c | 64.14±0.3c |
茄镰刀菌Haematonectria | 31.37±0.83b | 58.17±1.08d |
灰葡萄孢菌Botrytis cinerea | 32.26±2.96b | 61.48±2.22d |
大丽轮枝菌Verticillium dahliae | 7.92±0.37f | 89.29±0.47a |
核盘菌Sclerotinia sclerotiorum | 27.36±0.75d | 63.99±0.97c |
芒果囊孢菌Guignardia | 21.42±0.69e | 73.87±0.81b |
表3 菌株TN2对不同病原真菌的抑制效果
Table 3 Inhibitory effects of strain TN2 on various fungal pathogens
病原菌 Pathogen | 菌落直径 Colony diameter/mm | 抑菌率 Antibacterial rate/% |
---|---|---|
尖孢镰刀菌Fusarium oxysporum | 34.47±0.77a | 53.92±1.26e |
辣椒枯萎病菌Fusarium annuum | 29.05±0.27c | 64.14±0.3c |
茄镰刀菌Haematonectria | 31.37±0.83b | 58.17±1.08d |
灰葡萄孢菌Botrytis cinerea | 32.26±2.96b | 61.48±2.22d |
大丽轮枝菌Verticillium dahliae | 7.92±0.37f | 89.29±0.47a |
核盘菌Sclerotinia sclerotiorum | 27.36±0.75d | 63.99±0.97c |
芒果囊孢菌Guignardia | 21.42±0.69e | 73.87±0.81b |
图8 在不同温度(A)、pH(B)、超声波时长(C)和紫外线照射时长(D)处理下菌株TN2发酵滤液对辣椒尖孢炭疽菌抑制作用的稳定性 不同字母表示差异性显著(P<0.05)
Fig. 8 Effect of different temperatures(A), pH(B), ultrasonic duration(C), and UV irradiation duration(D)on the inhibitory stability of TN2 fermentation filtrate against C. acutatum Different letters indicate significant difference(P <0.05)
图9 菌株TN2对辣椒炭疽病的防治效果(标尺:10 mm) CK:无菌水+炭疽菌(阳性对照);TN2:TN2+炭疽菌
Fig. 9 Biocontrol effects of strain TN2 on pepper anthracnose(scale: 10 mm) CK: Sterile water + pepper anthrax(positive control); TN2: TN2 + anthrax
处理 Treatment | 第1天 Day 1 | 第3天 Day 3 | 第7天 Day 7 | ||||||
---|---|---|---|---|---|---|---|---|---|
病情指数 Disease index | 相对防效 Relative control effect/% | 病情指数 Disease index | 相对防效 Relative control effect/% | 病情指数 Disease index | 相对防效 Relative control effect/% | ||||
对照 CK | 9.44±8.28d | - | 47.59±9.67b | - | 72.22±3.79a | - | |||
TN2 | 0.56±1.36e | 94.12±0.14a | 8.06±4.52d | 83.07±0.10ab | 20.19±4.93c | 72.05±0.07b |
表4 菌株TN2对辣椒果实炭疽病的防治效果
Table 4 Efficacy of strain TN2 against anthrax in pepper fruits
处理 Treatment | 第1天 Day 1 | 第3天 Day 3 | 第7天 Day 7 | ||||||
---|---|---|---|---|---|---|---|---|---|
病情指数 Disease index | 相对防效 Relative control effect/% | 病情指数 Disease index | 相对防效 Relative control effect/% | 病情指数 Disease index | 相对防效 Relative control effect/% | ||||
对照 CK | 9.44±8.28d | - | 47.59±9.67b | - | 72.22±3.79a | - | |||
TN2 | 0.56±1.36e | 94.12±0.14a | 8.06±4.52d | 83.07±0.10ab | 20.19±4.93c | 72.05±0.07b |
[1] | Siddique MI, Lee HY, Ro NY, et al. Identifying candidate genes for Phytophthora capsici resistance in pepper(Capsicum annuum)via genotyping-by-sequencing-based QTL mapping and genome-wide association study[J]. Sci Rep, 2019, 9(1): 9962. |
[2] |
Barchenger DW, Lamour KH, Bosland PW. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici[J]. Front Plant Sci, 2018, 9: 628.
doi: 10.3389/fpls.2018.00628 pmid: 29868083 |
[3] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715-1726. |
Zou XX, Ma YQ, Dai XZ, et al. Spread and industry development of pepper in China[J]. Acta Hortic Sin, 2020, 47(9): 1715-1726.
doi: 10.16420/j.issn.0513-353x.2020-0103 |
|
[4] |
Dean R, Van Kan JAL, Pretorius ZA, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Mol Plant Pathol, 2012, 13(4): 414-430.
doi: 10.1111/j.1364-3703.2011.00783.x pmid: 22471698 |
[5] | 林清, 吕中华, 黄任中, 等. 辣(甜)椒抗TMV、CMV、疫病及炭疽病材料筛选[J]. 西南农业学报, 2005, 18(1): 108-110. |
Lin Q, Lv ZH, Huang RZ, et al. Screening of pepper germplasm for resistance to TMV, CMV, phytophthora blight and anthracnose[J]. Southwest China J Agric Sci, 2005, 18(1): 108-110. | |
[6] | Harp TL, Pernezny K, Ivey MLL, et al. The etiology of recent pepper anthracnose outbreaks in Florida[J]. Crop Prot, 2008, 27(10): 1380-1384. |
[7] | 刘丽萍, 高洁, 李玉. 植物炭疽菌属Colletotrichum真菌研究进展[J]. 菌物研究, 2020, 18(4): 266-281. |
Liu LP, Gao J, Li Y. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. J Fungal Res, 2020, 18(4): 266-281. | |
[8] | Zhou ZC, Tang XY, Peng LJ, et al. Complete genome sequence of Bacillus velezensis GUAL210, a potential biocontrol agent isolated from pepper rhizosphere[J]. Plant Dis, 2023, 107(3): 915-918. |
[9] |
Chowdhury SP, Hartmann A, Gao XW, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review[J]. Front Microbiol, 2015, 6: 780.
doi: 10.3389/fmicb.2015.00780 pmid: 26284057 |
[10] |
Fritze D. Taxonomy of the genus bacillus and related Genera: the aerobic endospore-forming bacteria[J]. Phytopathology, 2004, 94(11): 1245-1248.
doi: 10.1094/PHYTO.2004.94.11.1245 pmid: 18944461 |
[11] | Fan B, Blom J, Klenk HP, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an operational group B. amyloliquefaciens within the B. subtilis species complex[J]. Front Microbiol, 2017, 8: 22. |
[12] | 黄启中, 黄任中, 吕中华, 等. 单生朝天椒新品种艳椒425的选育[J]. 西南农业学报, 2011, 24(4): 1460-1463. |
Huang QZ, Huang RZ, Lv ZH, et al. Breeding of new single Chao-Tian pepper variety-yanjiao 425[J]. Southwest China J Agric Sci, 2011, 24(4): 1460-1463. | |
[13] |
肖志鹏, 李玲玲, 母婷婷, 等. 烟草赤星病菌拮抗菌解淀粉芽胞杆菌YW-2-6鉴定及生防效果[J]. 中国生物防治学报, 2022, 38(6): 1598-1607.
doi: 10.16409/j.cnki.2095-039x.2022.08.005 |
Xiao ZP, Li LL, Mu TT, et al. Identification and biocontrol effect of Bacillus amyloliquefaciens YW-2-6 against Alternaria alternata[J]. Chin J Biol Contr, 2022, 38(6): 1598-1607. | |
[14] | 朱萍萍, 凌健, 席亚东, 等. 蔬菜土传病害生防木霉菌株资源的筛选及其防治效果评价[J]. 中国蔬菜, 2015(8): 28-33. |
Zhu PP, Ling J, Xi YD, et al. Screening and bio-control effect assessment of Trichoderma strains against 3 soil-born vegetable pathogens[J]. China Veg, 2015(8): 28-33. | |
[15] |
王芳, 于璐, 齐泽铮, 等. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0070 |
Wang F, Yu L, Qi ZZ, et al. Screening and preventive efficacy of antagonistic bacteria in soybean fusarium rhizal rot[J]. Biotechnol Bull, 2024, 40(7): 216-225. | |
[16] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[17] |
邹兰, 王茜, 李慕仪, 等. 乌头内生细菌JY-3-1R的鉴定及其生防和促生能力研究[J]. 生物技术通报, 2023, 39(10): 246-255.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0590 |
Zou L, Wang Q, Li MY, et al. Identification, biocontrol and plant growth-promoting potential of endophytic bacterial strain JY-3-1R from Aconitum carmichaelii debx[J]. Biotechnol Bull, 2023, 39(10): 246-255. | |
[18] |
李素平, 李微, 韩冷, 等. 贝莱斯芽孢杆菌HY19挥发物对采后柑橘的防腐效果[J]. 园艺学报, 2024, 51(1): 162-174.
doi: 10.16420/j.issn.0513-353x.2023-0265 |
Li SP, Li W, Han L, et al. Bacillus velezensis HY19 volatile organic compounds as a preservative in postharvest citrus fruit management[J]. Acta Hortic Sin, 2024, 51(1): 162-174. | |
[19] |
张辉辉, 师尚礼, 武蓓, 等. 紫花苜蓿与不同生活型多年生禾本科牧草混播生长生理特征[J]. 草地学报, 2022, 30(8): 2144-2157.
doi: 10.11733/j.issn.1007-0435.2022.08.026 |
Zhang HH, Shi SL, Wu B, et al. Physiological characteristics of alfalfa mixed with perennial gramineous forages with different life forms[J]. Acta Agrestia Sin, 2022, 30(8): 2144-2157. | |
[20] |
韩玉竹, 邓钊, 张宝, 等. 解淀粉芽孢杆菌H15产抗菌肽的发酵条件优化和提取方法比较研究[J]. 食品科学, 2015, 36(15): 135-141.
doi: 10.7506/spkx1002-6630-201515025 |
Han YZ, Deng Z, Zhang B, et al. Optimization of fermentation conditions for production of antifungal peptides by Bacillus amyloliquefaciens H15 and comparison of extraction methods for antifungal peptides[J]. Food Sci, 2015, 36(15): 135-141. | |
[21] | 李亮亮, 雷高, 李磊, 等. 一株花生白绢病菌拮抗细菌的筛选、鉴定及发酵液中活性物质稳定性研究[J]. 花生学报, 2021, 50(1): 12-18. |
Li LL, Lei G, Li L, et al. Screening and identification of antagonistic bacterium against Sclerotium rolfsii, and studies on the stability of bioactive substances in fermentation broth[J]. J Peanut Sci, 2021, 50(1): 12-18. | |
[22] |
冯江鹏, 邱莉萍, 梁秀燕, 等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽胞杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5): 831-839.
doi: 10.3969/j.issn.1004-1524.2020.05.11 |
Feng JP, Qiu LP, Liang XY, et al. Identification of antagonistic bacteria Bacillus velezensis JK3 against anthracnose of strawberry and its antipathogenic activity[J]. Acta Agric Zhejiangensis, 2020, 32(5): 831-839. | |
[23] | Heo Y, Lee Y, Balaraju K, et al. Characterization and evaluation of Bacillus subtilis GYUN-2311 as a biocontrol agent against Colletotrichum spp. on apple and hot pepper in Korea[J]. Front Microbiol, 2024, 14: 1322641. |
[24] |
李莹, 宋新颖, 何康, 等. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0152 |
Li Y, Song XY, He K, et al. Isolation and identification of Bacillus velezensis ZHX-7 and its antibacterial and growth-promoting effects[J]. Biotechnol Bull, 2023, 39(12): 229-236. | |
[25] |
徐伟芳, 李贺宇, 张慧, 等. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-1172 |
Xu WF, Li HY, Zhang H, et al. Efficacy and its mechanism of bacterial strain HX0037 on the control of anthracnose disease of Trichosanthes kirilowii maxim[J]. Biotechnol Bull, 2024, 40(4): 228-241. | |
[26] | Kumar P, Dubey RC, Maheshwari DK. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens[J]. Microbiol Res, 2012, 167(8): 493-499. |
[27] | Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046. |
[28] | 孙磊, 邵红, 刘莹, 等. 春兰内生拮抗细菌gt19-1的鉴定及对辣椒胶孢炭疽菌的防效[J]. 安徽农业科学, 2012, 40(12): 7145-7146, 7154. |
Sun L, Shao H, Liu Y, et al. Identification of antagontstic endophyte bacterial strain gt19-1 from Cymbidium goeringii and its biocontrol effect on gloeosprium piperatum[J]. J Anhui Agric Sci, 2012, 40(12): 7145-7146, 7154. | |
[29] | 蒋桂芳, 宋力. 辣椒炭疽病生物防治技术的研究与展望[J]. 湖北农业科学, 2014, 53(11): 2481-2484, 2485. |
Jiang GF, Song L. Advances on biologically controling pepper anthracnose[J]. Hubei Agric Sci, 2014, 53(11): 2481-2484, 2485. | |
[30] |
Edirisinghe M, Ali A, Maqbool M, et al. Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes[J]. J Food Sci Technol, 2014, 51(12): 4078-4083.
doi: 10.1007/s13197-012-0907-5 pmid: 25477684 |
[31] | 宛甜甜. 解淀粉芽孢杆菌SN16-1对水稻稻瘟病的防治作用及其诱抗机理研究[D]. 上海: 华东理工大学, 2023. |
Wan TT. Study on the control effect of Bacillus amyloliquefaciens SN16-1 on rice blast and its induced resistance mechanism[D]. Shanghai: East China University of Science and Technology, 2023. | |
[32] | 陈鹏, 刘奇志. 二斑叶螨为害对草莓叶片H2O2、MDA含量以及部分防御酶活性的影响[J]. 环境昆虫学报, 2022, 44(3): 697-703. |
Chen P, Liu QZ. Effect of Tetranychus urticae feeding on H2O2 and MDA content and part of defense enzyme activity in strawberry leaves[J]. J Environ Entomol, 2022, 44(3): 697-703. | |
[33] |
Song AL, Xue GF, Cui PY, et al. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice[J]. Sci Rep, 2016, 6: 24640.
doi: 10.1038/srep24640 pmid: 27091552 |
[34] | 赵显阳, 盘柳依, 陈明, 等. 茉莉酸甲酯对辣椒抗青枯病的诱导效应及抗氧化酶活性的影响[J]. 植物保护学报, 2018, 45(5): 1103-1111. |
Zhao XY, Pan LY, Chen M, et al. Inductive effect of methyl jasmonate to bacterial wilt and the effects on the activities of antioxidant enzymes in pepper seedlings[J]. J Plant Prot, 2018, 45(5): 1103-1111. | |
[35] | 邓安玲, 常若葵, 李卓然, 等. 贝莱斯芽孢杆菌挥发性有机化合物对番茄灰葡萄孢的抑制及活性组分分析[J]. 植物病理学报, 2024. https://doi.org/10.13926/j.cnki.apps.001654. |
Deng AL, Chang RK, Li ZR, et al. Antagonistic activity and active components of volatile organic compounds(VOCs)from Bacillus velezensis C11 against Botrytis cinerea causing tomato gray mold[J]. Acta Phytopathol Sin, 2024. https://doi.org/10.13926/j.cnki.apps.001654. | |
[36] | 郭世堂, 李齐. 乙醇生产副产物在枯草芽孢杆菌培养中的应用[J]. 当代化工, 2022, 51(6): 1402-1405, 1410. |
Guo ST, Li Q. Application of by-products of ethanol production in Bacillus subtilis culture[J]. Contemp Chem Ind, 2022, 51(6): 1402-1405, 1410. | |
[37] | 赵子璇, 曾先锋, 覃诗扬, 等. 贝莱斯芽胞杆菌ZF438菌株的鉴定及其发酵上清液对辣椒炭疽病的抑菌作用[J]. 农业生物技术学报, 2023, 31(10): 2163-2175. |
Zhao ZX, Zeng XF, Qin SY, et al. Identification of Bacillus velezensis ZF438 and its antibacterial effect of fermentation supernatant on pepper anthracnose[J]. J Agric Biotechnol, 2023, 31(10): 2163-2175. |
[1] | 何财林, 卢晶, 郭会会, 李小安, 吴琪. 藜麦MADS-box基因家族的全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(1): 157-172. |
[2] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
[3] | 张亚亚, 李盼盼, 高惠惠, 贾晨波, 徐春燕. 基于根表真菌群落与病原菌鉴定探究‘宁杞5号’枸杞根腐病的发生机制[J]. 生物技术通报, 2024, 40(9): 238-248. |
[4] | 袁兰, 黄娅楠, 张贝妮, 熊雨萌, 王洪洋. 基于流式细胞仪鉴定马铃薯倍性的高通量样品制备方法[J]. 生物技术通报, 2024, 40(9): 141-147. |
[5] | 杜薇, 李志敏, 邢晏铭, 刘蒲临, 缪礼鸿. 一株易转化、高生物量地衣芽孢杆菌的筛选与鉴定[J]. 生物技术通报, 2024, 40(9): 181-189. |
[6] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[7] | 谭博文, 张懿, 张鹏, 王振宇, 马秋香. 木薯镁离子转运蛋白家族基因的鉴定及生物信息学分析[J]. 生物技术通报, 2024, 40(9): 20-32. |
[8] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
[9] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[10] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[11] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[12] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
[13] | 杨鹭, 袁源, 方志锴, 林如, 江红, 周剑. 一株链霉菌的鉴定及其产格尔德霉素的发酵工艺研究[J]. 生物技术通报, 2024, 40(6): 299-309. |
[14] | 阿丽亚·外力, 陈永坤, 克拉热木·克里木江, 王宝庆, 陈凌娜. 核桃SPL基因家族的系统进化和表达分析[J]. 生物技术通报, 2024, 40(6): 180-189. |
[15] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 945
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||