生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 259-268.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0292
李希1,2(), 边子俊1,2, 宁周神1,2, 刘红雨1,2, 曾槟2, 董伟1,2,3()
收稿日期:
2024-03-25
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
董伟,男,博士,教授,研究方向:应用与环境生物学;E-mail: wdong@jxust.edu.cn作者简介:
李希,女,硕士研究生,研究方向:环境微生物;E-mail: 6720230057@mail.jxust.edu.cn
基金资助:
LI Xi1,2(), BIAN Zi-jun1,2, NING Zhou-shen1,2, LIU Hong-yu1,2, ZENG Bing2, DONG Wei1,2,3()
Received:
2024-03-25
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 挖掘离子型稀土矿山植物根际微生物资源,分离鉴定多功能根际促生菌,探究其生物学特性和促生作用,为微生物菌肥的开发探索创新途径。【方法】 对从赣南某离子型稀土矿区植物根际筛选的菌株DW019进行鉴定,基于16S rRNA基因序列分析和菌株培养特性确定其种属;通过检测菌株产IAA、铁载体和氨气的能力,初步确定其促生特性;采用平板对峙法测定菌株与典型土传病致病菌的拮抗效果;最后,采用盆栽实验对生菜的生长指标、叶绿素、抗氧化酶活性、营养品质进行测定,判断菌株DW019对生菜的促生效果。【结果】 菌株经鉴定命名为蜡样芽孢杆菌DW019,具有产IAA、铁载体和氨气的能力。平板对峙结果表明,菌株DW019对立枯丝核菌(Thanatephorus cucumeris)、水稻恶苗病病原真菌串珠镰孢(Fusarium moniliforme Sheldon)和番茄早疫病病原真菌链格孢(Alternaria alternata(Fries)Keissler)均有良好的抑制效果。与对照组相比,添加不同浓度DW019的盆栽生菜的生物学指标显著提高,叶绿素、自由水、维生素C、可溶性糖和丙二醛(MDA)含量以及过氧化物酶(POD)活性也有明显提升。【结论】 蜡样芽孢杆菌DW019是一株多功能根际促生菌,具有产植物激素和生物防治能力,对多种土传病致病菌有良好抑制效果,能显著促进植物生长并改善植物品质。
李希, 边子俊, 宁周神, 刘红雨, 曾槟, 董伟. 离子型稀土矿根际芽孢杆菌的促生作用研究[J]. 生物技术通报, 2024, 40(11): 259-268.
LI Xi, BIAN Zi-jun, NING Zhou-shen, LIU Hong-yu, ZENG Bing, DONG Wei. Studies on the Growth-promoting Effect of Bacillus Strain from Rhizosphere in Ionic Rare Earth Ores[J]. Biotechnology Bulletin, 2024, 40(11): 259-268.
分组Group | 施药后 7 d 的药害情况Damage at 7 d after application |
---|---|
CK | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S1 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S2 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S3 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S4 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
表1 蜡样芽孢杆菌 DW019对生菜的影响
Table 1 Effects of B. cereus DW019 on lettuce(Lactuca sativa)
分组Group | 施药后 7 d 的药害情况Damage at 7 d after application |
---|---|
CK | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S1 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S2 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S3 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
S4 | 生长正常、叶色绿,无药害 Normal growth, green leaf color, and no drug damage |
分组 Group | 地上部分生物量 Above-ground biomass/g | 地下部分生物量 Underground biomass/g | 茎粗 Stem thickness/cm | 子叶数 Cotyledons/pieces | 株高 Plant height/cm |
---|---|---|---|---|---|
CK | 16.74±3.11a | 2.74±0.71a | 3.04±0.36a | 14.40±2.30a | 11.86±0.67a |
S1 | 17.65±1.66a | 3.21±0.86ab | 3.22±0.14a | 15.40±1.34a | 12.78±1.139ab |
S2 | 25.22±5.41b | 4.44±1.18b | 4.02±0.31b | 16.20±0.30a | 13.08±0.61ab |
S3 | 42.72±3.46c | 6.14±1.19c | 4.94±0.31c | 19.80±1.48b | 13.81±1.15b |
S4 | 55.13±5.85d | 7.51±0.63c | 5.26±0.11c | 21.60±0.55b | 14.14±1.09b |
表2 加入不同浓度的菌液对生菜生长期生物学指标的影响
Table 2 Effects of adding different concentrations of bacterial solution on biological indicators during lettuce growth period
分组 Group | 地上部分生物量 Above-ground biomass/g | 地下部分生物量 Underground biomass/g | 茎粗 Stem thickness/cm | 子叶数 Cotyledons/pieces | 株高 Plant height/cm |
---|---|---|---|---|---|
CK | 16.74±3.11a | 2.74±0.71a | 3.04±0.36a | 14.40±2.30a | 11.86±0.67a |
S1 | 17.65±1.66a | 3.21±0.86ab | 3.22±0.14a | 15.40±1.34a | 12.78±1.139ab |
S2 | 25.22±5.41b | 4.44±1.18b | 4.02±0.31b | 16.20±0.30a | 13.08±0.61ab |
S3 | 42.72±3.46c | 6.14±1.19c | 4.94±0.31c | 19.80±1.48b | 13.81±1.15b |
S4 | 55.13±5.85d | 7.51±0.63c | 5.26±0.11c | 21.60±0.55b | 14.14±1.09b |
图5 接种DW019后土壤有机质的含量变化 BLK:未种植生菜时的土壤
Fig. 5 Changes in organic matter content in soil after the inoculation of DW019 BLK: Soil when not planted with lettuce
指标 Norm | 子叶数 Cotyledons | 株高 Plant height | 茎粗 Stem thickness | 含水量 Water content | 地上部生物量 Above-ground biomass | 地下部生物量 Underground biomass | 土壤有机质 Soil organic matter |
---|---|---|---|---|---|---|---|
子叶数Cotyledons | 1 | ||||||
株高Plant height | 0.613** | 1 | |||||
茎粗Stem thickness | 0.867** | 0.621** | 1 | ||||
含水量Water content | 0.547** | 0.456* | 0.635** | 1 | |||
地上部生物量 Above-ground biomass | 0.915** | 0.675** | 0.951** | 0.714** | 1 | ||
地下部生物量 Underground biomass | 0.894** | 0.588** | 0.934** | 0.555** | 0.930** | 1 | |
土壤有机质 Soil organic matter | -0.615** | -0.559** | -0.693** | -0.312 | -0.684** | -0.616** | 1 |
表3 土壤有机质与生菜相关参数的相关系数
Table 3 Correlation coefficients between soil organic matter and lettuce growth
指标 Norm | 子叶数 Cotyledons | 株高 Plant height | 茎粗 Stem thickness | 含水量 Water content | 地上部生物量 Above-ground biomass | 地下部生物量 Underground biomass | 土壤有机质 Soil organic matter |
---|---|---|---|---|---|---|---|
子叶数Cotyledons | 1 | ||||||
株高Plant height | 0.613** | 1 | |||||
茎粗Stem thickness | 0.867** | 0.621** | 1 | ||||
含水量Water content | 0.547** | 0.456* | 0.635** | 1 | |||
地上部生物量 Above-ground biomass | 0.915** | 0.675** | 0.951** | 0.714** | 1 | ||
地下部生物量 Underground biomass | 0.894** | 0.588** | 0.934** | 0.555** | 0.930** | 1 | |
土壤有机质 Soil organic matter | -0.615** | -0.559** | -0.693** | -0.312 | -0.684** | -0.616** | 1 |
[1] | 曾立, 程万里, 余豪, 等. 多粘类芽孢杆菌KM2501-1发酵液对番茄根结线虫的防治效果[J]. 应用与环境生物学报, 2020, 26(5): 1046-1050. |
Zeng L, Cheng WL, Yu H, et al. Controlling efficiency of Paenibacillus polymyxa KM2501-1 fermentation liquid against tomato root-knot nematode[J]. Chin J Appl Environ Biol, 2020, 26(5): 1046-1050. | |
[2] | 李海云, 姚拓, 张榕, 等. 红三叶根际促生菌中具生防效果菌株筛选、鉴定及特性研究[J]. 植物营养与肥料学报, 2018, 24(3): 743-750. |
Li HY, Yao T, Zhang R, et al. Screening, identification and characterization of biocontrol bacteria from PGPR in Trifolium pretense[J]. J Plant Nutr Fertil, 2018, 24(3): 743-750. | |
[3] | 张晓冰, 杨星勇, 杨永柱, 等. 芽孢杆菌促进植物生长机制研究进展[J]. 江苏农业科学, 2020, 48(3): 73-80. |
Zhang XB, Yang XY, Yang YZ, et al. Research progress of plant growth-promoting mechanism of Bacillus[J]. Jiangsu Agric Sci, 2020, 48(3): 73-80. | |
[4] | 胡小东, 柴云霞, 邹阳, 等. 烤烟根际促生菌应用研究进展[J]. 中国烟草学报, 2015, 21(5): 119-125. |
Hu XD, Chai YX, Zou Y, et al. Advances in the application of plant growth promoting bacteria in rhizosphere of flue-cured tobacco[J]. Acta Tabacaria Sin, 2015, 21(5): 119-125. | |
[5] | Chandra A, Chandra P, Tripathi P. Whole genome sequence insight of two plant growth-promoting bacteria(B. subtilis BS87 and B. megaterium BM89)isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality[J]. Microbiol Res, 2021, 247: 126733. |
[6] | Zuluaga MYA, Milani KML, Miras-Moreno B, et al. Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants[J]. Appl Soil Ecol, 2021, 158: 103784. |
[7] | 刘磊, 梁昌聪, 曾迪, 等. 芽胞杆菌次生代谢产物及其在土传病害防控中的应用研究进展[J]. 热带作物学报, 2017, 38(4): 775-782. |
Liu L, Liang CC, Zeng D, et al. Research progress on secondary metabolites of Bacillus spp. and their applications in biocontrol of soil-borne diseases[J]. Chin J Trop Crops, 2017, 38(4): 775-782. | |
[8] | 潘梦诗, 郭文阳, 张宗源, 等. 贝莱斯芽孢杆菌对花生白绢病的防治效果[J]. 生物学杂志, 2022, 39(1): 37-41. |
Pan MS, Guo WY, Zhang ZY, et al. Biocontrol effects of Bacillus velezensis on peanut stem rot caused by Sclerotium rolfsii[J]. J Biol, 2022, 39(1): 37-41. | |
[9] | 孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制[J]. 应用生态学报, 2021, 32(1): 299-308. |
Sun YF, Liu Z, Li HY, et al. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato[J]. Chin J Appl Ecol, 2021, 32(1): 299-308. | |
[10] | Dong W, Liu HY, Ning ZS, et al. Inoculation with Bacillus cereus DW019 modulates growth, yield and rhizospheric microbial community of cherry tomato[J]. Agronomy, 2023, 13(6): 1458. |
[11] | Carrión VJ, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612. |
[12] | 何森, 谢东, 宋美玲, 等. 离子型稀土矿植物根际促生芽孢杆菌的筛选与鉴定[J]. 江西理工大学学报, 2021, 42(1): 52-58. |
He S, Xie D, Song ML, et al. Isolation and identification of plant growth promoting rhizobacteria Bacillus in the ionic rare-earth mines[J]. J Jiangxi Univ Sci Technol, 2021, 42(1): 52-58. | |
[13] | 姜云, 田磊, 陈长卿, 等. 一株人参内生产吲哚乙酸细菌的筛选及鉴定[J]. 中国中药杂志, 2015, 40(2): 213-217. |
Jiang Y, Tian L, Chen CQ, et al. Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng[J]. China J Chin Mater Med, 2015, 40(2): 213-217. | |
[14] | 王琦琦, 冯丽, 李杨, 等. 新疆木碱蓬(Suaeda dendroides)根际耐盐促生细菌的筛选及鉴定[J]. 微生物学通报, 2019, 46(10): 2569-2578. |
Wang QQ, Feng L, Li Y, et al. Screening and identification of salt-tolerant promoting bacteria of the rhizosphere of Suaeda dendroides in Xinjiang[J]. Microbiol China, 2019, 46(10): 2569-2578. | |
[15] | 张凤杰, 金玮鋆, 张晓蒙, 等. 生防菌解淀粉芽孢杆菌B15发酵液抗菌谱及安全性测试[J]. 江苏农业科学, 2021, 49(5): 102-106. |
Zhang FJ, Jin WY, Zhang XM, et al. Inhibitory spectrum and safety test of fermentation broth of biocontrol bacteria Bacillus amyloliquefaciens B15[J]. Jiangsu Agric Sci, 2021, 49(5): 102-106. | |
[16] | 严卓立, 李爱, 张源一, 等. 十二种薄荷对NaCl胁迫的生理响应与综合评价[J]. 植物生理学报, 2021, 57(1): 159-168. |
Yan ZL, Li A, Zhang YY, et al. Physiological responses of twelve mints to NaCl stress and evaluation of salt tolerance[J]. Plant Physiol J, 2021, 57(1): 159-168. | |
[17] | 刘鹏, 毕江涛, 罗成科, 等. 耐盐菌对盐胁迫下水稻种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2022, 41(2): 246-256. |
Liu P, Bi JT, Luo CK, et al. Effects of salt-tolerant bacteria on rice seed germination and seedling growth under salt stress[J]. J Agro Environ Sci, 2022, 41(2): 246-256. | |
[18] | 李华勇, 赵楠, 杨艺萍, 等. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建[J]. 地质力学学报, 2022, 28(2): 226-236. |
Li HY, Zhao N, Yang YP, et al. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction[J]. J Geomech, 2022, 28(2): 226-236. | |
[19] | 叶如梦, 田锴, 胡海静, 等. 一株枯草芽孢杆菌对香蜂花的促生效果及关键代谢物积累的环境响应[J]. 应用与环境生物学报, 2020, 26(5): 1035-1045. |
Ye RM, Tian K, Hu HJ, et al. Prompting effects of an endophytic bacteria, Bacillus subtilis, on Melissa officinalis L. growth and response of its central secondary metabolic products to culturing conditions[J]. Chin J Appl Environ Biol, 2020, 26(5): 1035-1045. | |
[20] | 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127. |
Mu WQ, Kang SM, Li PL. Advances in rhizosphere growth-promoting bacteria function on plant growth facilitation and their mechanisms[J]. Chin Bull Life Sci, 2022, 34(2): 118-127. | |
[21] | Bach E, dos Santos Seger GD, de Carvalho Fernandes G, et al. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria[J]. Appl Soil Ecol, 2016, 99: 141-149. |
[22] | 杨晓蕾, 李建宏, 姚拓, 等. 5株植物根际促生菌功能特性及培养条件[J]. 草业科学, 2022, 39(1): 30-38. |
Yang XL, Li JH, Yao T, et al. Functional characteristics and culture conditions of five plant growth-promoting rhizobacteria strains[J]. Pratacultural Sci, 2022, 39(1): 30-38. | |
[23] | 陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报, 2020, 31(8): 2759-2766. |
Chen L, Mi GH, Li KK, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chin J Appl Ecol, 2020, 31(8): 2759-2766. | |
[24] | Belogolova G, Gordeeva O, Sokolova M, et al. Transformation of lead compounds in the soil-plant system under the influence of Bacillus and Azotobacter rhizobacteria[J]. Chem Ecol, 2020, 36(3): 220-235. |
[25] | 李晓芳, 田叶韩, 彭海莹, 等. 防治苦瓜枯萎病的拮抗放线菌分离筛选及鉴定[J]. 应用生态学报, 2020, 31(11): 3869-3879. |
Li XF, Tian YH, Peng HY, et al. Isolation, screening and identification of anantagonistic actinomycetes to control Fusarium wilt of Momordica charantia[J]. Chin J Appl Ecol, 2020, 31(11): 3869-3879. | |
[26] | 杨晓帆, 梁家慧, 于文英, 等. 促生荧光假单胞菌对桃树根区土壤环境和植株生长的影响[J]. 植物营养与肥料学报, 2022, 28(8): 1494-1508. |
Yang XF, Liang JH, Yu WY, et al. Effect of Pseudomonas fluorescens on rhizospheric soil quality and growth of peach(Prunus persica L. Batsch)[J]. J Plant Nutr Fertil, 2022, 28(8): 1494-1508. | |
[27] | Alaylar B. Isolation and characterization of culturable endophytic plant growth promoting Bacillus species from Mentha longifolia L[J]. Turk J Agric For, 2022, 46(1): 73-82. |
[28] | Kumar A, Rabha J, Jha DK. Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP, against Colletotrichum capsici, the causal organism of anthracnose disease of chilli[J]. Biocatal Agric Biotechnol, 2021, 36: 102133. |
[29] | Yadav K, Damodaran T, Dutt K, et al. Effective biocontrol of banana fusarium wilt tropical race 4 by a bacillus rhizobacteria strain with antagonistic secondary metabolites[J]. Rhizosphere, 2021, 18: 100341. |
[30] | 李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
Li FY, Liu XY, Yan JT, et al. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agric Zhejiangensis, 2021, 33(5): 873-884. | |
[31] | 程园园, 王晓丹, 刘莎莎, 等. 两株生菜根际芽孢杆菌(Bac-illus spp.)的分离与特性研究[J]. 微生物学通报, 2014, 41(12): 2450-2457. |
Cheng YY, Wang XD, Liu SS, et al. Isolation and characteristics of two Bacillus spp. from the rhizosphere of Lactuca sativa[J]. Microbiol China, 2014, 41(12): 2450-2457. | |
[32] | 庞晓敏. 茶树根际土壤解磷菌的筛选鉴定及生物活性验证[J]. 湖南农业科学, 2022(1): 42-45. |
Pang XM. Isolation, identification and biological activity verification of phosphorus-solubilizing bacteria from rhizosphere soil of tea trees[J]. Hunan Agric Sci, 2022(1): 42-45. | |
[33] | 王艳霞, 解志红, 张蕾, 等. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报, 2020, 60(5): 1023-1035. |
Wang YX, Xie ZH, Zhang L, et al. Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina[J]. Acta Microbiol Sin, 2020, 60(5): 1023-1035. | |
[34] | 刘冰冰, 郭书贤, 陈兴, 等. 烤烟K326与香料植物间作模式下根际土可培养细菌多样性及功能[J]. 微生物学通报, 2020, 47(8): 2436-2449. |
Liu BB, Guo SX, Chen X, et al. Diversity and function of culturable rhizospheric bacteria of flue-cured tobacco K326 intercropped with five spice plants[J]. Microbiol China, 2020, 47(8): 2436-2449. |
[1] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[2] | 杜薇, 李志敏, 邢晏铭, 刘蒲临, 缪礼鸿. 一株易转化、高生物量地衣芽孢杆菌的筛选与鉴定[J]. 生物技术通报, 2024, 40(9): 181-189. |
[3] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
[4] | 车建美, 赖恭梯, 李思雨, 郭奥琳, 陈冰星, 陈杏, 刘波, 赖呈纯. 复合微生物菌剂对葡萄生长、品质及根际土壤环境的影响[J]. 生物技术通报, 2024, 40(8): 264-274. |
[5] | 张梦菲, 余炼, 李菲, 李喆, 苏芯莹, 蓝彩碧, 朱虎, 秦莹. 响应面法优化暹罗芽孢杆菌产大环内酯的发酵培养条件[J]. 生物技术通报, 2024, 40(8): 299-308. |
[6] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[7] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
[8] | 周江鸿, 夏菲, 仲丽, 仇兰芬, 李广, 刘倩, 张国锋, 邵金丽, 李娜, 车少臣. 黄栌枯萎病拮抗细菌CCBC3-3-1的全基因组测序及比较基因组分析[J]. 生物技术通报, 2024, 40(7): 235-246. |
[9] | 杨代毅, 樊杨, 屠焰, 徐志宇, 薛颖昊, 孙元丰, 王进, 郝小燕, 马涛. 不同处理对油菜秸秆养分、纤维结构和硫苷含量的影响[J]. 生物技术通报, 2024, 40(6): 172-179. |
[10] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[11] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
[12] | 王璐, 刘梦雨, 张富源, 纪守坤, 王云, 张英杰, 段春辉, 刘月琴, 严慧. 瘤胃源粪臭素降解菌的分离鉴定及其降解特性研究[J]. 生物技术通报, 2024, 40(3): 305-311. |
[13] | 杨伟杰, 杨周林, 朱浩东, 魏煜, 刘君, 刘训. 地衣素合成酶关键模块 LchAD 蛋白的性质和功能研究[J]. 生物技术通报, 2024, 40(3): 322-332. |
[14] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[15] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||