生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 95-104.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0493
张月1,2(
), 戴月华1,2, 张莹莹1,2, 李奥辉1,2, 李楚慧1,2, 薛金爱2, 秦慧彬1, 陈妍1, 聂萌恩1, 张海平1(
)
收稿日期:2025-05-13
出版日期:2026-01-26
发布日期:2026-02-04
通讯作者:
张海平,女,研究员,研究方向:大豆种质资源;E-mail: nkyzhp@126.com作者简介:张月,女,硕士研究生,研究方向:种质创新与遗传工程;E-mail: 953349970@qq.com
基金资助:
ZHANG Yue1,2(
), DAI Yue-hua1,2, ZHANG Ying-ying1,2, LI Ao-hui1,2, LI Chu-hui1,2, XUE Jin-ai2, QIN Hui-bin1, CHEN Yan1, NIE Meng-en1, ZHANG Hai-ping1(
)
Received:2025-05-13
Published:2026-01-26
Online:2026-02-04
摘要:
目的 ECR基因是大豆(Glycine max (L.) Merr.)植物表皮蜡质合成途径中的重要基因,研究大豆GmECR14基因的生物学功能,为进一步探索其分子机制提供理论基础,同时为培育优质、耐逆大豆新品种提供参考。 方法 利用PCR技术从大豆品种‘Jack’中克隆得到GmECR14基因,结合生物信息学分析其理化性质、蛋白结构以及系统进化关系,通过RT-qPCR技术分析GmECR14基因在干旱及盐胁迫下的表达模式,利用亚细胞定位确定其蛋白表达的位置,构建植物过表达载体和敲除载体,并通过农杆菌介导的遗传转化将GmECR14基因转入大豆毛状根、拟南芥中,分析验证GmECR14基因功能。 结果 GmECR14基因编码区全长930 bp,编码309个氨基酸,为典型的跨膜蛋白;启动子分析表明,该基因启动子上存在多种逆境胁迫相关顺式作用元件;亚细胞定位显示其蛋白定位于内质网中。系统进化关系表明大豆GmECR14基因与花生(Arachis hypogaea)AhECR蛋白序列亲缘关系较近。实时荧光定量PCR分析表明,GmECR14基因在干旱和盐胁迫下均受到诱导表达。对转基因大豆毛状根表型、蜡质含量及20% PEG 6000、200 mmol/L NaCl胁迫下进行分析,结果表明过表达植株侧根数较对照明显增多,蜡质含量为对照的24%,耐旱、耐盐性显著提高;而敲除植株中侧根数显著减少,蜡质含量与对照无差异,干旱及盐胁迫后阳性株死亡。在拟南芥中异源表达GmECR14基因,过表达植株蜡质含量较对照增加16.4%,且莲座叶的叶绿素浸出率和水分散失速率均明显下降。 结论 GmECR14基因正向调控大豆蜡质合成,提高植株的耐旱性和耐盐性。
张月, 戴月华, 张莹莹, 李奥辉, 李楚慧, 薛金爱, 秦慧彬, 陈妍, 聂萌恩, 张海平. 大豆烯酰辅酶A还原酶ECR14基因的克隆与功能分析[J]. 生物技术通报, 2026, 42(1): 95-104.
ZHANG Yue, DAI Yue-hua, ZHANG Ying-ying, LI Ao-hui, LI Chu-hui, XUE Jin-ai, QIN Hui-bin, CHEN Yan, NIE Meng-en, ZHANG Hai-ping. Cloning and Functional Analysis of the Soybean Enoyl-CoA Reductase ECR14 Gene[J]. Biotechnology Bulletin, 2026, 42(1): 95-104.
表1 GmECR14基因顺式作用元件统计
Table 1 Statistics of cis-acting elements of GmECR14 gene
图1 GmECR14蛋白的理化性质分析A:GmECR14蛋白亲水性预测;B:GmECR14蛋白跨膜结构域预测
Fig. 1 Analysis of the GmECR14 protein's physicochemical characteristicsA: Forecasting the hydrophilicity profile for the GmECR14 protein. B: Prediction of the GmECR14 protein’s transmembrane domain
图3 GmECR14与其他物种ECR蛋白序列的系统进化树Gm:大豆;At:拟南芥;Bc:油菜;Cs:脐橙;Si:谷子;Mi:芒果;Sb:高粱;Md:苹果;Cm:葫芦;Qr:板栗;Gh:棉花;Rc:蓖麻;Pa:樱桃;As:花生;Ta:小麦;Vv:葡萄;Cxc:柑橘;Ntc:烟草
Fig. 3 Phylogenetic tree of GmECR 14 and ECR proteins of other plant speciesGm: Glycine max. At: Arabidopsis thaliana. Bc: Brassica napus L. Cs: Citrus sinensis (L) Osbeck. Si: Setaria italica. Mi: Mangifera indica L. Sb: Sorghum bicolor L. Md: Malus pumila Mill. Cm: Lagenaria Siceraria. Qr: Castanea mollissima Blume. Gh: Gossypium hirsutum. Rc: Ricinus communis L. Pa: Prunus pseudocerasus. As: Arachis hypogaea L. Ta: Triticum aestivum L. Vv: Vitis vinifera L. Cxc: Citrus reticulate Blanco. Ntc: Nicotiana tabacum L.
图4 GmECR14表达模式分析误差线为标准误,图中不同字母表示差异显著(P<0.05),下同
Fig. 4 Analysis of expression pattern of GmECR14Error bars indicate standard errors. The different letters in the figure indicate significant differences (P<0.05). The same below
图6 大豆毛状根表型A:不同处理下大豆毛状根侧根数差异图;B:对照毛状根;C:敲除阳性毛状根;D:不同处理下大豆毛状根侧根对比图。**:P<0.01
Fig. 6 Soybean hairy root phenotypeA: Difference in the number of lateral roots of soybean hairy roots under different treatments. B: Control hairy roots. C: Knockout-positive soybean hairy roots. D: Comparison of lateral roots of soybean hairy roots under different treatments
| [1] | Jetter R, Riederer M. Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components [J]. Plant Physiol, 2016, 170(2): 921-934. |
| [2] | 武瑞鑫, 刘贵波. 禾本科植物表皮蜡质形成及其与环境因素的关系 [J]. 草学, 2021(4): 9-18. |
| Wu RX, Liu GB. Research progress on the epidermal wax of Gramineae plants and its responses to environment stress [J]. J Grassland Forage Sci, 2021(4): 9-18. | |
| [3] | Jian L, Kang K, Choi Y, et al. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis [J]. Plant J, 2022, 112(2): 339-351. |
| [4] | 杨帆. 水分亏缺对棉花叶片表皮蜡质与角质及基因表达谱的影响 [D]. 石河子: 石河子大学, 2022. |
| Yang F. Impact of water deficiency on leaf cuticle wax and cutin and gene expressio networks in cotton (Gossypium hirsutum L.) [D]. Shihezi: Shihezi University, 2022. | |
| [5] | Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation [J]. Plant Sci, 2013, 210: 93-107. |
| [6] | 王立山, 丁兵, 李玉花, 等. 植物表皮蜡质合成转运调控相关基因与干旱响应的研究进展 [J]. 园艺学报, 2018, 45(9): 1831-1843. |
| Wang LS, Ding B, Li YH, et al. Reaserch progress of plant cuticular wax biosynthesis, export and regulation related genes responsed to drought [J]. Acta Hortic Sin, 2018, 45(9): 1831-1843. | |
| [7] | Batsale M, Bahammou D, Fouillen L, et al. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses [J]. Cells, 2021, 10(6): 1284. |
| [8] | Fehling E, Mukherjee KD. Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity [J]. Biochim Biophys Acta Lipds Lipid Metab, 1991, 1082(3): 239-246. |
| [9] | 李亚利, 孔任秋, 高宏. 蜡酯生物合成研究进展 [J]. 安徽农业科学, 2013, 41(2): 512-515, 518. |
| Li YL, Kong RQ, Gao H. Research progress on wax ester biosynthesis [J]. J Anhui Agric Sci, 2013, 41(2): 512-515, 518. | |
| [10] | 李莉, 赵米贤, 王建华, 等. 植物表皮蜡质合成、运输及调控机制研究进展 [J]. 中国农业大学学报, 2023, 28(7): 1-19. |
| Li L, Zhao MX, Wang JH, et al. Research progress on genetic mechanisms of plant epidermal wax synthesis, transport and regulation [J]. J China Agric Univ, 2023, 28(7): 1-19. | |
| [11] | Gao YL, Zhang ZX, Cheng J, et al. Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress [J]. Funct Integr Genom, 2022, 23(1): 17. |
| [12] | Kohlwein SD, Eder S, Oh CS, et al. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae . [J]. Mol Cell Biol, 2001, 21(1): 109-125. |
| [13] | Gable K, Garton S, Napier JA, et al. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system [J]. J Exp Bot, 2004, 55(396): 543-545. |
| [14] | Zheng HQ, Rowland O, Kunst L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis [J]. Plant Cell, 2005, 17(5): 1467-1481. |
| [15] | Liu DC, Guo WF, Guo XY, et al. Ectopic overexpression of CsECR from navel orange increases cuticular wax accumulation in tomato and enhances its tolerance to drought stress [J]. Front Plant Sci, 2022, 13: 924552. |
| [16] | 李婷婷. 小麦旗叶表皮蜡质QTL定位及烷烃合成酶候选基因的功能分析 [D]. 杨凌: 西北农林科技大学, 2019. |
| Li TT. QTL mapping of flag leaf cuticular wax and functional analysis of candidate alkane synthase gene in wheat [D]. Yangling: Northwest A & F University, 2019. | |
| [17] | Park JA, Kim TW, Kim SK, et al. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana [J]. FEBS Lett, 2005, 579(20): 4459-4464. |
| [18] | 刘虹洁, 王金星, 刘昭军, 等. 大豆种子蛋白和油脂含量调控的研究进展 [J]. 热带亚热带植物学报, 2022, 30(6): 791-800. |
| Liu HJ, Wang JX, Liu ZJ, et al. Research progress on protein and oil contents of soybean seeds [J]. J Trop Subtrop Bot, 2022, 30(6): 791-800. | |
| [19] | 王芳, 于璐, 齐泽铮, 等. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果 [J]. 生物技术通报, 2024, 40(7): 216-225. |
| Wang F, Yu L, Qi ZZ, et al. Screening and biocontrol effect of antagonistic bacteria against soybean root rot [J]. Biotechnol Bull, 2024, 40(7): 216-225. | |
| [20] | Manna M, Thakur T, Chirom O, et al. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants [J]. Physiol Plant, 2021, 172(2): 847-868. |
| [21] | 刘露. 大豆GmNHL1基因的克隆及对干旱、盐胁迫功能分析 [D]. 长春: 吉林农业大学, 2023. |
| Liu L. Cloning and functional analysis of GmNHL1 gene in soybean under drought and salt stress [D]. Changchun: Jilin Agricultural University, 2023. | |
| [22] | 苗淑楠, 高宇, 李昕儒, 等. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析 [J]. 生物技术通报, 2023, 39(2): 96-106. |
| Miao SN, Gao Y, Li XR, et al. Functional analysis of soybean GmPDAT1 genes in the oil biosynthesis and response to abiotic stresses [J]. Biotechnol Bull, 2023, 39(2): 96-106. | |
| [23] | 何小红, 张习敏, 张宇斌, 等. 遵辣一号及其墨西哥野生祖先种BPC转录因子家族的差异 [J]. 分子植物育种, 2018, 16(8): 2429-2435. |
| He XH, Zhang XM, Zhang YB, et al. Differences in the BPC transcription factor family between Capsicum annuum L. Zunla-1 and its wild ancestor C. annuum var. glabriusculum [J]. Mol Plant Breed, 2018, 16(8): 2429-2435. | |
| [24] | 张飞. 大豆GmPDAT1-B和GmDGAT3-2基因的克隆及功能分析 [D]. 太谷: 山西农业大学, 2019. |
| Zhang F. Cloning and functional characterization of GmPDAT1-B and GmDGAT3-2 genes in Glycine max [D]. Taigu: Shanxi Agricultural University, 2019. | |
| [25] | 苗淑楠. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析 [D]. 太谷: 山西农业大学, 2023. |
| Miao SN. Functional analysis of soybean GmPDAT1 genes in oil biosynthesis and response to abiotic stresses [D]. Taigu: Shanxi Agricultural University, 2023. | |
| [26] | 薛迎斌, 宋佳, 李枭艺, 等. 大豆GmMADS4基因克隆、亚细胞定位及功能分析 [J]. 华南农业大学学报, 2023, 44(3): 420-429. |
| Xue YB, Song J, Li XY, et al. Cloning, subcellular localization and functional analysis of GmMADS4 in soybean [J]. J South China Agric Univ, 2023, 44(3): 420-429. | |
| [27] | 刘爽. 适用于发根农杆菌介导的毛状根转化的高效 CRISPR/Cas9基因编辑体系的建立 [D]. 聊城: 聊城大学, 2022. |
| Liu S. Establishment of an efficient CRISPR/Cas9 gene editing system in Agrobacterium rhizogene-mediated hairy root transformation [D]. Liaocheng: Liaocheng University, 2022. | |
| [28] | 刘慧娟, 冯志国, 李先文, 等. 采用农杆菌花序浸染法获得转crtB基因拟南芥 [J]. 湖北农业科学, 2013, 52(1): 200-202. |
| Liu HJ, Feng ZG, Li XW, et al. Obtaining crtB transgenic Arabidopsis thaliana by Agrobacterium tumefaciens-Floral dip method [J]. Hubei Agric Sci, 2013, 52(1): 200-202. | |
| [29] | Millar AA, Clemens S, Zachgo S, et al. CUT1 an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme [J]. Plant Cell, 1999, 11(5): 825-838. |
| [30] | 李娇娇. 苹果蜡质合成相关基因MdLACS1的克隆和功能鉴定 [D]. 泰安: 山东农业大学, 2023. |
| Li JJ. Molecular cloning and functional characterization of wax synthesis related gene MdLACS1 in apple [D]. Tai’an: Shandong Agricultural University, 2023. | |
| [31] | Ming Chen GH. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the arbidopsis LCB1 subunit of serine palmitoyltransferase [J]. Plant Cell, 2006, 18(12): 3576-3593. |
| [32] | Qin YM, Hu CY, Pang Y, et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell, 2007, 19(11): 3692-3704. |
| [33] | Pornsiriwong W, Estavillo GM, Chan KX, et al. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination [J]. eLife, 2017, 6: e23361. |
| [34] | Dubey A, Kumar A, Ahmad Malla M, et al. Approaches for the amelioration of adverse effects of drought stress on crop plants [J]. Front Biosci (Landmark Ed), 2021, 26(10): 928. |
| [35] | Nadeem M, Li JJ, Yahya M, et al. Research progress and perspective on drought stress in legumes: a review [J]. Int J Mol Sci, 2019, 20(10): 2541. |
| [36] | 刘亚欣, 高小妹, 黄梦月, 等. 植物角质层蜡质组成、生物合成及响应外界胁迫功能研究进展 [J]. 济南大学学报: 自然科学版, 2024, 38(1): 101-105. |
| Liu YX, Gao XM, Huang MY, et al. Research progresses on composition, biosynthesis, and functions in response to outer stresses of plant cuticular wax [J]. J Univ Jinan Sci Technol, 2024, 38(1): 101-105. | |
| [37] | 李芮. 糜子超长链脂肪醇合成酶基因PmFAR的克隆与功能分析 [D]. 杨凌: 西北农林科技大学, 2020. |
| Li R. Cloning and identification of very-long-chain fatty alcohol Synthetical enzyme gene PmFAR in Panicum miliaceum L . [D]. Yangling: Northwest A & F University, 2020. |
| [1] | 任云儿, 伍国强, 成斌, 魏明. 甜菜BvATGs基因家族全基因组鉴定及盐胁迫下表达模式分析[J]. 生物技术通报, 2026, 42(1): 184-197. |
| [2] | 李亚涛, 张志鹏, 赵梦瑶, 吕镇, 甘恬, 魏浩, 吴书凤, 马玉超. 根瘤菌Bd1的全基因组分析及TetR3对细胞生长和结瘤的负调控功能[J]. 生物技术通报, 2025, 41(9): 289-301. |
| [3] | 胡璐, 王凯, 徐婧仪, 叶丽慧, 王永飞, 王丽华, 李杰勤. 玉米和高粱遗传转化技术研究进展[J]. 生物技术通报, 2025, 41(9): 32-43. |
| [4] | 黄国栋, 邓宇星, 程宏伟, 但焱南, 周会汶, 吴兰花. 大豆ZIP基因家族鉴定及响应铝胁迫的表达分析[J]. 生物技术通报, 2025, 41(9): 71-81. |
| [5] | 巩慧玲, 邢玉洁, 马俊贤, 蔡霞, 冯再平. 马铃薯LAC基因家族的鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2025, 41(9): 82-93. |
| [6] | 关陟昊, 单治易, 熊赫, 赵瑞雪. 基于计算文献的大豆耦合性状知识发现研究[J]. 生物技术通报, 2025, 41(9): 345-356. |
| [7] | 李雅琼, 格桑拉毛, 陈启迪, 杨宇环, 何花转, 赵耀飞. 异源过表达高粱SbSnRK2.1增强拟南芥对盐胁迫的抗性[J]. 生物技术通报, 2025, 41(8): 115-123. |
| [8] | 邓美壁, 严浪, 詹志田, 朱敏, 和玉兵. RUBY辅助的水稻高效CRISPR基因编辑[J]. 生物技术通报, 2025, 41(8): 65-73. |
| [9] | 朱丽娟, 张锴, 温晓蕾, 褚佳豪, 史凤玉, 王艳丽. 基于WGCNA挖掘野生大豆耐镉关键基因[J]. 生物技术通报, 2025, 41(8): 124-136. |
| [10] | 李开杰, 吴瑶, 李丹丹. 红花CtbHLH128基因克隆及调控干旱胁迫应答功能研究[J]. 生物技术通报, 2025, 41(8): 234-241. |
| [11] | 翟莹, 计俊杰, 陈炯辛, 于海伟, 李珊珊, 赵艳, 马天意. 异源过表达大豆GmNF-YB24提高转基因烟草抗旱性[J]. 生物技术通报, 2025, 41(8): 137-145. |
| [12] | 程雪, 付颖, 柴晓娇, 王红艳, 邓欣. 谷子LHC基因家族鉴定及非生物胁迫表达分析[J]. 生物技术通报, 2025, 41(8): 102-114. |
| [13] | 付博晗, 毛华, 赵薪程, 陆虹, 欧庸彬, 姚银安. 不同杨树SOS1基因启动子的克隆及盐胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 205-213. |
| [14] | 牛景萍, 赵婧, 郭茜, 王书宏, 赵晋忠, 杜维俊, 殷丛丛, 岳爱琴. 基于WGCNA鉴定大豆抗大豆花叶病毒NAC转录因子及其诱导表达分析[J]. 生物技术通报, 2025, 41(7): 95-105. |
| [15] | 王芳, 乔帅, 宋伟, 崔鹏娟, 廖安忠, 谭文芳, 杨松涛. 甘薯IbNRT2基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(7): 193-204. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||