生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 95-104.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0493

• 研究报告 • 上一篇    下一篇

大豆烯酰辅酶A还原酶ECR14基因的克隆与功能分析

张月1,2(), 戴月华1,2, 张莹莹1,2, 李奥辉1,2, 李楚慧1,2, 薛金爱2, 秦慧彬1, 陈妍1, 聂萌恩1, 张海平1()   

  1. 1.山西农业大学农业基因资源研究中心,太原 030031
    2.山西农业大学农学院,太谷 030801
  • 收稿日期:2025-05-13 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 张海平,女,研究员,研究方向:大豆种质资源;E-mail: nkyzhp@126.com
  • 作者简介:张月,女,硕士研究生,研究方向:种质创新与遗传工程;E-mail: 953349970@qq.com
  • 基金资助:
    山西省重大专项计划“揭榜挂帅”项目(202201140601025);国家重点研发计划子课题(2021YFD1600601-03);大豆种业创新良种联合攻关,山西省现代农业产业技术体系建设专项资金

Cloning and Functional Analysis of the Soybean Enoyl-CoA Reductase ECR14 Gene

ZHANG Yue1,2(), DAI Yue-hua1,2, ZHANG Ying-ying1,2, LI Ao-hui1,2, LI Chu-hui1,2, XUE Jin-ai2, QIN Hui-bin1, CHEN Yan1, NIE Meng-en1, ZHANG Hai-ping1()   

  1. 1.Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
    2.College of Agronomy, Shanxi Agricultural University, Taigu 030801
  • Received:2025-05-13 Published:2026-01-26 Online:2026-02-04

摘要:

目的 ECR基因是大豆(Glycine max (L.) Merr.)植物表皮蜡质合成途径中的重要基因,研究大豆GmECR14基因的生物学功能,为进一步探索其分子机制提供理论基础,同时为培育优质、耐逆大豆新品种提供参考 方法 利用PCR技术从大豆品种‘Jack’中克隆得到GmECR14基因,结合生物信息学分析其理化性质、蛋白结构以及系统进化关系,通过RT-qPCR技术分析GmECR14基因在干旱及盐胁迫下的表达模式,利用亚细胞定位确定其蛋白表达的位置,构建植物过表达载体和敲除载体,并通过农杆菌介导的遗传转化将GmECR14基因转入大豆毛状根、拟南芥中,分析验证GmECR14基因功能。 结果 GmECR14基因编码区全长930 bp,编码309个氨基酸,为典型的跨膜蛋白;启动子分析表明,该基因启动子上存在多种逆境胁迫相关顺式作用元件;亚细胞定位显示其蛋白定位于内质网中。系统进化关系表明大豆GmECR14基因与花生(Arachis hypogaea)AhECR蛋白序列亲缘关系较近。实时荧光定量PCR分析表明,GmECR14基因在干旱和盐胁迫下均受到诱导表达。对转基因大豆毛状根表型、蜡质含量及20% PEG 6000、200 mmol/L NaCl胁迫下进行分析,结果表明过表达植株侧根数较对照明显增多,蜡质含量为对照的24%,耐旱、耐盐性显著提高;而敲除植株中侧根数显著减少,蜡质含量与对照无差异,干旱及盐胁迫后阳性株死亡。在拟南芥中异源表达GmECR14基因,过表达植株蜡质含量较对照增加16.4%,且莲座叶的叶绿素浸出率和水分散失速率均明显下降。 结论 GmECR14基因正向调控大豆蜡质合成,提高植株的耐旱性和耐盐性。

关键词: 大豆, 植物表皮蜡质, GmECR14基因, 遗传转化, 盐胁迫, 干旱胁迫

Abstract:

Objective The ECR gene is a key one in the cuticular wax biosynthesis pathway of soybean plants. This study aims to investigate the biological function of the soybean GmECR14 gene, provide a theoretical basis for further exploring its molecular mechanism, and offer references for breeding new soybean varieties with high quality and stress tolerance. Method PCR technology was used to clone the GmECR14 gene the soybean cultivar ‘Jack’ . Bioinformatics analysis was conducted to characterize its physicochemical properties, protein structure, and phylogenetic relationship. RT-qPCR was used to analyze the expression pattern of GmECR14 under drought and salt stress. Subcellular localization was performed to determine the expression site of its encoded protein. Plant overexpression and knockout vectors were constructed, and the GmECR14 gene was introduced into soybean hairy roots and Arabidopsis thaliana via Agrobacterium-mediated genetic transformation to verify its function. Result The coding region of GmECR14 is 930 bp in length, encoding 309 amino acids, and the encoded protein was a typical transmembrane protein. Promoter analysis revealed that the presence of multiple cis-acting elements was related to abiotic stress in the gene promoter. Subcellular localization showed that the protein was localized in the endoplasmic reticulum. Phylogenetic analysis indicated that the soybean GmECR14 gene had a close genetic relationship with the AhECR protein sequence of peanut (Arachis hypogaea). Real-time fluorescent quantitative PCR analysis showed that the expression of GmECR14 was induced under both drought and salt stress. Phenotypic analysis, cuticular wax content determination, and stress tests (20% PEG 6000 and 200 mmol/L NaCl) of transgenic soybean hairy roots showed that: compared with the control, the overexpressing lines had significantly more lateral roots, the cuticular wax content was 0.24 times that of the control, and the tolerances to drought and salt were significantly improved. In contrast, the knockout lines had significantly fewer lateral roots, no difference in cuticular wax content compared with the control, and positive plants died after drought and salt stress. Heterologous expression of GmECR14 in A. thaliana showed that the cuticular wax content of overexpressing plants increased by 16.4% compared with the control, and the chlorophyll leaching rate and water loss rate of rosette leaves significantly decreased. Conclusion The GmECR14 gene positively regulates cuticular wax biosynthesis in soybeans and enhances the drought and salt tolerance of plants.

Key words: soybean, plant cuticular wax, GmECR14 gene, genetic transformation, salt stress, drought stress