Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (1): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.001
Wang Wei, Zhang Yujuan, Chen Jie, Liu Jubo, Xia Minxuan, Shen Fafu
Received:
2014-07-14
Online:
2015-01-09
Published:
2015-01-10
Wang Wei, Zhang Yujuan, Chen Jie, Liu Jubo, Xia Minxuan, Shen Fafu. Research Progress of MicroRNAs in Plant Stress Responses[J]. Biotechnology Bulletin, 2015, 31(1): 1-10.
[1] Knight H, Knight MR. Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends in Plant Science, 2001, 6(6):262-267. [2] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [3] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5):855-862. [4] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906. [5] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. The Plant Cell Online, 2004, 16(8):2001-2019. [6] Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characteriza-tion of micro-RNAs from moss[J]. The Plant Journal, 2005, 43(6):837-848. [7] Sunkar R, Girke T, Jain PK, et al. Cloning and characterization of microRNAs from rice[J]. The Plant Cell Online, 2005, 17(5):1397-1411. [8] Mica E, Gianfranceschi L, Pè ME. Characterization of five microRNA families in maize[J]. Journal of Experimental Botany, 2006, 57(11):2601-2612. [9] Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat(Triticum aestivum L.)[J]. Genome Biology, 2007, 8(6):R96. [10] Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants[J]. Nature Genetics, 2006, 38:S31-S36. [11] Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Current Biology, 2005, 15(22):2038-2043. [12] Jones-rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6):787-799. [13] Carrington JC, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631):336-338. [14] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. The EMBO Journal, 2004, 23(20):4051-4060. [15] Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila dicer-1 and dicer-2 in the siRNA/miRNA silencing pathways[J]. Cell, 2004, 117(1):69-81. [16] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. [17] Kim YK, Kim VN. Processing of intronic microRNAs[J]. The EMBO Journal, 2007, 26(3):775-783. [18] Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34):12753-12758. [19] Kim VN. MicroRNA biogenesis:coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology, 2005, 6(5):376-385. [20] Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis[J]. Rna, 2006, 12(2):206-212. [21] Vazquez F, Gasciolli V, Crété P, et al. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing[J]. Current Biology, 2004, 14(4):346-351. [22] Lobbes D, Rallapalli G, Schmidt DD, et al. SERRATE:a new player on the plant microRNA scene[J]. EMBO Reports, 2006, 7(10):1052-1058. [23] Boutet S, Vazquez F, Liu J, et al. Arabidopsis HEN1:A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance[J]. Current Biology, 2003, 13(10):843-848. [24] Vaucheret H, Vazquez F, Crété P, et al. The action of ARGONAU-TE1 in the miRNA pathway and its regulation by the miRNA path-way are crucial for plant development[J]. Genes & Development, 2004, 18(10):1187-1197. [25] Chan SP, Slack FJ. Point of VIEw microRNA-mediated silencing inside P-bodies[J]. RNA Biology, 2006, 3(3):97-100. [26] Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants[J]. The Plant Cell Online, 2007, 19(6):1750-1769. [27] Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants[J]. The Plant Cell Online, 2005, 17(6):1658-1673. [28] Ricci EP, Limousin T, Soto-Rifo R, et al. Activation of a microRNA response in trans reveals a new role for poly(A)in translational repression[J]. Nucleic Acids Research, 2011, 39(12):5215-5231. [29] Cullen BR. Derivation and function of small interfering RNAs and microRNAs[J]. Virus Research, 2004, 102(1):3-9. [30] Baker CC, Sieber P, Wellmer F, et al. The early extra petals1 Mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis[J]. Current Biology, 2005, 15(4):303-315. [31] Pfeffer S, Lagos-Quintana M, Tuschl T. Cloning of small RNA molecules[OL] //Current Protocols in Molecular Biology, 2005, DOI:10.1002/0471142727.mb2604s72. [32] Zuker M. Mfold web server for nucleic acid folding and hybridiza-tion prediction[J]. Nucleic Acids Research, 2003, 31(13):3406-3415. [33] Berninger P, Gaidatzis D, Van Nimwegen E, et al. Computational analysis of small RNA cloning data[J]. Methods, 2008, 44(1):13-21. [34] Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes & Development, 2002, 16(13):1616-1626. [35] Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell Online, 2002, 14(7):1605-1619. [36] Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nature Reviews Genetics, 2007, 8(2):93-103. [37] Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263. [38] Mallory AC, Bouché N. MicroRNA-directed regulation:to cleave or not to cleave[J]. Trends in Plant Science, 2008, 13(7):359-367. [39] Jover-Gil S, Candela H, Ponce M. Plant microRNAs and developm-ent[J]. International Journal of Developmental Biology, 2005, 49(5/6):733. [40] Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PloS One, 2007, 2(2):e219. [41] Adai A, Johnson C, Mlotshwa S, et al. Computational prediction of miRNAs in Arabidopsis thaliana[J]. Genome Research, 2005, 15(1):78-91. [42] Billoud B, De Paepe R, Baulcombe D, et al. Identification of new small non-coding RNAs from tobacco and Arabidopsis[J]. Biochimie, 2005, 87(9):905-910. [43] Yin Z, Li C, Han X, et al. Identification of conserved microRNAs and their target genes in tomato(Lycopersicon esculentum)[J]. Gene, 2008, 414(1):60-66. [44] Xu Y, Zhou X, Zhang W. MicroRNA prediction with a novel ranking algorithm based on random walks[J]. Bioinformatics, 2008, 24(13):i50-i58. [45] Kauppinen S, Havelda Z. Detection of siRNAs and miRNAs[M] //Plant Virology Protocols. Springer, 2008:217-227. [46] Arora A, Mckay GJ, Simpson DAC. Prediction and verification of miRNA expression in human and rat retinas[J]. Investigative Ophthalmology & Visual Science, 2007, 48(9):3962-3967. [47] Lai EC. Predicting and validating microRNA targets[J]. Genome Biology, 2004, 5(9):115. [48] Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. The Plant Cell Online, 2006, 18(8):2051-2065. [49] Du TT, Fu YF, Dong M, et al. Experimental validation and complexity of miRNA-mRNA target interaction during zebrafish primitive erythropoiesis[J]. Biochemical and Biophysical Research Communications, 2009, 381(4):688-693. [50] Addo-Quaye C, Miller W, Axtell MJ. CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J]. Bioinformatics, 2009, 25(1):130-131. [51] Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. The Plant Cell Online, 2002, 14(8):1675-1690. [52] Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273. [53] 沈亚欧, 林海建, 张志明, 等. 植物逆境miRNA研究进展[J]. 遗传, 2009, 31(3):227-235. [54] 彭建斐, 戴良英, 何玉科, 等. 水稻微小RNA研究进展[J]. 湖南农业科学, 2010(15):4-6, 10. [55] Dunoyer P, Lecellier CH, Parizotto EA, et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing[J]. The Plant Cell Online, 2004, 16(5):1235-1250. [56] Saumet A, Lecellier CH. Anti-viral RNA silencing:do we look like plants?[J]. Retrovirology, 2006, 3(1):3. [57] Feng J, Wang K, Liu X, et al. The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR[J]. Gene, 2009, 437(1):14-21. [58] Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29):10381-10386. [59] 孙广鑫, 栾雨时, 崔娟娟. 番茄中与致病密切相关miRNA的挖掘及特性分析[J]. 遗传, 2014(1):69-76. [60] Zhang W, Gao S, Zhou X, et al. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J]. Plant Molecular Biology, 2011, 75(1-2):93-105. [61] Yin Z, Li Y, Han X, et al. Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots[J]. PloS One, 2012, 7(4):e35765. [62] Feng BH, Yang Y, Shi YF, et al. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae[J]. Journal of Integrative Plant Biology, 2013, 55(5):473-483. [63] 姜兆远, 任金平, 刘晓梅, 等. 稻瘟病菌胁迫下水稻miRNA的表达[J]. 安徽农业科学, 2013(17):7410-7412, 7417. [64] 罗茂, 彭华, 宋锐, 等. 玉米纹枯病胁迫相关miRNA功能研究[J]. 作物学报, 2013(05):837-844. [65] Gal-On A, Kaplan I, Palukaitis P. Differential effects of satellite RNA on the accumulation of cucumber mosaic virus RNAs and their encoded proteins in tobacco vs zucchini squash with two strains of CMV helper virus[J]. Virology, 1995, 208(1):58-66. [66] Diermann N, Matou?ek J, Junge M, et al. Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid(PSTVd)in infected tomato[J]. Biological Chemistry, 2010, 391(12):1379-1390. [67] Chiou TJ. The role of microRNAs in sensing nutrient stress[J]. Plant, Cell & Environment, 2007, 30(3):323-332. [68] Pant BD, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing[J]. Plant Physiology, 2009, 150(3):1541-1555. [69] Joshi T, Yan Z, Libault M, et al. Prediction of novel miRNAs and associated target genes in Glycine max[J]. BMC Bioinformatics, 2010, 11(Suppl 1):S14. [70] Combier JP, Frugier F, De Billy F, et al. MtHAP2-1 is a key transc-riptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula[J]. Genes & Develop-ment, 2006, 20(22):3084-3088. [71] Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proceedings of the National Academy of Sciences, 2008, 105(2):803-808. [72] Nischal L, Mohsin M, Khan I, et al. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes[J]. PloS One, 2012, 7(12):e50261. [73] Roghothama KG, Karthikeyan AS. Phosphate acqiucition[J]. Plant and Soil, 2005, 274(1-2):37-49. [74] Bari R, Pant BD, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3):988-999. [75] Aung K, Lin SI, Wu CC, et al. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene[J]. Plant Physiology, 2006, 141(3):1000-1011. [76] Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. The Plant Cell Online, 2006, 18(2):412-421. [77] Wang G, 余道乾, 杜雄明. 陆地棉种子发育过程中microRNA的挖掘与功能研究[J]. 棉花学报, 2014(1):81-86. [78] Zeng HQ, Zhu YY, Huang SQ, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean(Gly-cine max L.)[J]. Journal of Plant Physiology, 2010, 167(15):1289-1297. [79] Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007, 12(7):301-309. [80] Lappartient AG, Vidmar JJ, Leustek T, et al. Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. The Plant Journal, 1999, 18(1):89-95. [81] Takahashi H, Watanabe-Takahashi A, Smith FW, et al. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. The Plant Journal, 2000, 23(2):171-182. [82] Siré C, Moreno AB, Garcia-Chapa M, et al. Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398[J]. FEBS Letters, 2009, 583(6):1039-1044. [83] Yamasaki H, Abdel-Ghany SE, Cohu CM, et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(22):16369-16378. [84] Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice[J]. Biochemical and Biophysical Research Communications, 2007, 354(2):585-590. [85] 颜秦峰, 李科友, 石振楠, 等. 过表达miR398对烟草抗旱性的影响[J]. 北方园艺, 2013(13):111-116. [86] 罗书芳, 崔浪军, 王健, 等. 干旱胁迫下15种丹参miRNAs差异表达分析[J]. 广东农业科学, 2013(5):134-137. [87] Wei L, Zhang D, Xiang F, et al. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings[J]. International Journal of Plant Sciences, 2009, 170(8):979-989. [88] Li D, Wang L, Liu X, et al. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds[J]. PloS One, 2013, 8(1):e55107. [89] Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. Rna, 2008, 14(5):836-843. [90] 王冰, 宋娜, 孙燕飞, 等. MircoRNA156家族在小麦非生物胁迫中的表达分析[J]. 植物病理学报, 2013(2):201-204. [91] Yin Z, Li Y, Yu J, et al. Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity[J]. Molecular Biology Reports, 2012, 39(4):4961-4970. [92] 杜驰, 廖茂森, 张霞, 等. 盐胁迫下花花柴miR398对Cu/Zn超氧化物歧化酶基因的调控研究[J]. 西北植物学报, 2014(4):682-688. [93] Fang X, Zhao Y, Ma Q, et al. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes[J]. PloS One, 2013, 8(12):e81471. [94] Yang Z, Chen J. A potential role of microRNAs in plant response to metal toxicity[J]. Metallomics, 2013, 5(9):1184-1190. [95] Zhang LW, Song JB, Shu XX, et al. miR395 is involved in detoxification of cadmium in Brassica napus[J]. Journal of Hazardous Materials, 2013(250-251):204-211. [96] Zhang B, Pan X, Stellwag EJ. Identification of soybean microRNAs and their targets[J]. Planta, 2008, 229(1):161-182. [97] Lu S, Sun YH, Shi R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabido-psis[J]. The Plant Cell Online, 2005, 17(8):2186-2203. [98] Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus[J]. The Plant Journal, 2008, 55(1):131-151. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[9] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[10] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[11] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[12] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[13] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[14] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[15] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||