Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 40-46.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.001
• Review • Previous Articles Next Articles
Pan Xiaowu Li Xiaoxiang Li Yongchao Yao Yi Liu Wenqiang Sheng Xinnian
Received:
2014-12-31
Online:
2015-04-22
Published:
2015-04-22
Pan Xiaowu, Li Xiaoxiang, Li Yongchao, Yao Yi, Liu Wenqiang, Sheng Xinnian. Advances on Molecular and Genetic Mechanisms of Rice Heat Tolerance at the Reproductive Stage[J]. Biotechnology Bulletin, 2015, 31(4): 40-46.
[1] Solomon S. Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge:Cambridge University Press, 2007. [2] Teixeira EI, Fischer G, Van Velthuizen H, et al. Global hot-spots of heat stress on agricultural crops due to climate change[J]. Agricultural and Forest Meteorology, 2013, 170:206-215. [3] Peng S, Huang J, Sheehy JE, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27):9971-9975. [4] Xiao Y, Pan Y, Luo L, et al. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice(Oryza sativa L. )[J]. Euphytica, 2011, 178(3):331-338. [5] Sato K, Inaba K, Tozawa M. High temperature injury of ripening in rice plant. I. The effects of high temperature treatments at different stages of panicle development on the ripening[C]. Proceedings of the Proc Crop Sci Soc Jap, 1973. [6] Jagadish S, Craufurd P, Wheeler T. High temperature stress and spikelet fertility in rice(Oryza sativa L. ). Journal of Experimental Botany, 2007, 58(7):1627-1635. [7] Shah F, Huang J, Cui K, et al. Impact of high-temperature stress on rice plant and its traits related to tolerance[J]. The Journal of Agricultural Science, 2011, 149(5):545-556. [8] Mathur S, Agrawal D, Jajoo A. Photosynthesis:Response to high temperature stress[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 137:116-126. [9] Lu GH, Wu YF, Bai WB, et al. Influence of high temperature stress on net photosynthesis, dry matter partitioning and rice grain yield at flowering and grain filling stages[J]. Journal of Integrative Agriculture, 2013, 12(4):603-609. [10] Wei H, Liu J, Wang Y, et al. A dominant major locus in chromosome 9 of rice(Oryza sativa L. )confers tolerance to 48 C high temperature at seedling stage[J]. Journal of Heredity, 2013, 104(2):287-294. [11] Jagadish S, Muthurajan R, Oane R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L. )[J]. Journal of Experimental Botany, 2010, 61(1):143-156. [12] Matsui T, Omasa K. Rice(Oryza sativa L. )cultivars tolerant to high temperature at flowering:anther characteristics[J]. Annals of Botany, 2002, 89(6):683-687. [13] Matsui T, Omasa K, Horie T. Comparison between two rice(Oryza sative L. )cultivars with tolerance to high temperatures at flowering or susceptibility[J]. Plant Prod Sci, 2001, 4(1):36-40. [14] 奎丽梅, 谭禄宾, 涂建, 等. 云南元江野生稻抽穗开花期耐热 QTL 定位[J]. 农业生物技术学报, 2008, 16(3):461-464. [15] Lei D, Tan L, Liu F, et al. Identification of heat-sensitive QTL derived from common wild rice(Oryza rufipogon Griff. )[J]. Plant Science, 2013, 201:121-127. [16] Ishimaru T, Hirabayashi H, Ida M, et al. A genetic resource for early- morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis[J]. Annals of Botany, 2010, 106(3):515-520. [17] Thanh PT, Phan PDT, Ishikawa R, et al. QTL analysis for flowering time using backcross population between Oryza sativa Nipponbare and O. rufipogon[J]. Genes & Genetic Systems, 2010, 85(4):273-279. [18] 杨梯丰, 张少红, 王晓飞, 等. 水稻抽穗开花期耐热种质资源的筛选鉴定[J]. 华南农业大学学报, 2012, 33(4):585-588. [19] Shah F, Nie L, Cui K, et al. Rice grain yield and component responses to near 2℃ of warming[J]. Field Crops Research, 2014, 157:98-110. [20] 曹立勇, 朱军, 赵松涛, 等. 水稻籼粳交 DH 群体耐热性的 QTLs 定位[J]. 农业生物技术学报, 2002, 10(3):210-214. [21] 赵志刚, 江玲, 肖应辉, 等. 水稻孕穗期耐热性 QTLs 分析[J]. 作物学报, 2006, 32(5):640-644. [22] Cheng LR, Wang JM, Uzokwe V, et al. Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice(Oryza sativa L. )[J]. Journal of Integrative Agriculture, 2012, 11(3):359-367. [23] Jagadish S, Cairns J, Lafitte R, et al. Genetic analysis of heat tolerance at anthesis in rice[J]. Crop Science, 2010, 50(5):1633-1641. [24] Tazib T, Kobayashi Y, Koyama H, et al. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice(Oryza sativa L. )[J]. Euphytica, 2014., doi:10.1007/S1068-014-1291-1. [25] 陈庆全, 余四斌, 李春海, 等. 水稻抽穗开花期耐热性 QTL 的定位分析[J]. 中国农业科学, 2008, 41(2):315-321. [26] 盘毅, 罗丽华, 邓化冰, 等. 水稻开花期高温胁迫下的花粉育性 QTL 定位[J]. 中国水稻科学, 2011, 25(1):99-102. [27] Ye C, Argayoso MA, Redo?a ED, et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers[J]. Plant Breeding, 2012, 131(1):33-41. [28] Matsui T, Kobayasi K, Yoshimoto M, et al. Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia[J]. Plant Production Science, 2007, 10(1):57-63. [29] Van Oort P, Saito K, Zwart S, et al. A simple model for simulating heat induced sterility in rice as a function of flowering time and transpirational cooling[J]. Field Crops Research, 2014, 156:303-312. [30] Zhang GL, Chen LY, Xiao GY, et al. Bulked segregant analysis to detect QTL related to heat tolerance in rice(Oryza sativa L.)using SSR markers[J]. Journal of Integrative Agriculture, 2009, 8(4):482-487. [31] Hobo T, Suwabe K, Aya K, et al. Various spatiotemporal expression profiles of anther-expressed genes in rice[J]. Plant and Cell Physiology, 2008, 49(10):1417-1428. [32] Wang Z, Liang Y, Li C, et al. Microarray analysis of gene expression involved in anther development in rice(Oryza sativa L. )[J]. Plant Molecular Biology, 2005, 58(5):721-737. [33] Zhang X, Rerksiri W, Liu A, et al. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf[J]. Gene, 2013, 530(2):185-192. [34] Zhang X, Li J, Liu A, et al. Expression profile in rice panicle:insights into heat response mechanism at reproductive stage[J]. PLoS One, 2012, 7(11):e49652. [35] Endo M, Tsuchiya T, Hamada K, et al. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development[J]. Plant and Cell Physiology, 2009, 50(11):1911-1922. [36] 王曼玲, 李落叶, 徐孟亮, 等. 应用基因表达芯片分析水稻高温胁迫相关基因[J]. 生物技术通报, 2009(10):92-97. [37] Zou J, Liu C, Chen X. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice[J]. Plant Cell Reports, 2011, 30(12):2155-2165. [38] 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异[J]. 作物学报, 2011, 37(5):820-831. [39] 张桂莲, 陈立云, 张顺堂, 等. 抽穗开花期高温对水稻剑叶理化特性的影响[J]. 中国农业科学, 2007, 40(7):1345-1352. [40] 曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3):512-521. [41] Liu JG, Qin Q, Zhang Z, et al. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor[J]. BMB Rep, 2009, 42(1):16-21. [42] Liu AL, Zou J, Zhang XW, et al. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2):142-149. [43] Sarkar NK, Kim YK, Grover A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. BMC Genomics, 2009, 10(1):393. [44] Wang Y, Lin S, Song Q, et al. Genome-wide identification of heat shock proteins(Hsps)and Hsp interactors in rice:Hsp70s as a case study[J]. BMC Genomics, 2014, 15(1):344. [45] Chakrabortee S, Tripathi R, Watson M, et al. Intrinsically disordered proteins as molecular shields[J]. Molecular Biosystems, 2012, 8(1):210-219. [46] Yokthongwattana K, Chrost B, Behrman S, et al. Photosystem II damage and repair cycle in the green alga Dunaliella salina:involvement of a chloroplast-localized HSP70[J]. Plant and Cell Physiology, 2001, 42(12):1389-1397. [47] Lin MY, Chai KH, Ko SS, et al. A positive feedback loop between HSP101 and HSA32 modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties[J]. Plant Physiology, 2014, 164(4):2045-2053. [48] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1):21-30. [49] El-Kereamy A, Bi YM, Ranathunge K, et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS One, 2012, 7(12):e52030. [50] Feng L, Wang K, Li Y, et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants[J]. Plant Cell Reports, 2007, 26(9):1635-1646. [51] Katiyar-Agarwal S, Agarwal M, Grover A. Heat-tolerant basmati rice engineered by over-expression of hsp101[J]. Plant Molecular Biology, 2003, 51(5):677-686. [52] Murakami T, Matsuba S, Funatsuki H, et al. Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants[J]. Molecular Breeding, 2004, 13(2):165-175. [53] Uchida A, Hibino T, Shimada T, et al. Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica Increases seed yield in rice and tobacco[J]. Plant Biotechnology, 2008, 25(2):141-150. [54] Qin D, Wang F, Geng X, et al. Overexpression of heat stress-responsive TaMBF1c, a wheat(Triticum aestivum L.)Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice[J]. Plant Molecular Biology, 2015, 87(1-2):31-45. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[10] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[11] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[12] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[13] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[14] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
[15] | SHI Jia, ZHU Xiu-mei, XUE Meng-yu, YU Chao, WEI Yi-ming, YANG Feng-huan, CHEN Hua-min. Optimization and Application of the Chromatin Immunoprecipitation Based on Rice Protoplast [J]. Biotechnology Bulletin, 2022, 38(7): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||