Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 92-98.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.012
• Review • Previous Articles Next Articles
Feng Mao Li Jianke
Received:
2015-03-03
Online:
2015-04-22
Published:
2015-04-22
Feng Mao, Li Jianke. Advances on Honeybee Proteome Study[J]. Biotechnology Bulletin, 2015, 31(4): 92-98.
[1]李建科, 冯毛, 郑爱娟. 蜜蜂蛋白质组研究进展[J]. 中国农业科学, 2011, 44(17):3649-3657. [2]Iovinella I, Dani FR, Niccolini A, et al. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age[J]. Jouranl of Proteome Research, 2011, 10(8):3439-3449. [3]Fang Y, Song F, Zhang L, et al. Differential antennal proteome comparison of adult honeybee drone, worker and queen(Apis mellifera L. )[J]. Journal of Proteomics, 2012, 75(3):756-773. [4]Feng M, Song F, Aleku D, et al. Antennal proteome comparison of sexually mature drone and forager honey bees[J]. Journal of Proteome Research, 2011, 10:3246-3260. [5]Woltedji D, Song F, Zhang L, et al. Western honeybee drones and workers(Apis mellifera ligustica)have different olfactory mechanisms than eastern honeybees(Apis cerana cerana)[J]. Journal of Proteome Research, 2012, 11:4526-4540. [6]Fang Y, Feng M, Han B, et al. In-depth proteomics characterization of embryogenesis of the honey bee worker(Apis mellifera ligustica)[J]. Molecular& Cellular Proteomics, 2014, 13(9):2306-2320. [7]Li J, Fang Y, Zhang L, et al. Honeybee(Apis mellifera ligustica)drone embryo proteomes[J]. Journal of Insect Physiology, 2011, 57(3):372-384. [8]Haapalainen AM, Koski MK, Qin YM, et al. Binary structure of the two-domain(3R)-hydroxyacyl-CoA dehydrogenase from rat peroxisomal multifunctional enzyme type 2 at 2. 38 ? resolution[J]. Structure, 2003, 11(1):87-97. [9]Zheng A, Li J, Begna D, et al. Proteomic analysis of honeybee(Apis mellifera L.) pupae head development[J]. PLoS One, 2011, 6(5):e20428. [10]Begna D, Fang Y, Feng M, et al. Mitochondrial proteins differential expression during honeybee(Apis mellifera L.)queen and worker larvae caste determination[J]. Journal of Proteome Research, 2011, 10:4263-4280. [11]Begna D, Han B, Feng M, et al. Differential expressions of nuclear proteomes between honeybee(Apis mellifera L.)queen and worker larvae:a deep insight into caste pathway decisions[J]. Journal of Proteome Research, 2012, 11:1317-1329. [12]Chan QWT, Mutti NS, Foster LJ, et al. The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition[J]. PLoS One, 2011, 6(9):e24794. [13]Herna?ndez LG, Lu B, da Cruz GCN, et al. Worker honeybee brain proteome[J]. Journal of Proteome Research, 2012, 11(3):1485-1493. [14]Cardoen D, Ernst U, Boerjan B, et al. Worker honeybee sterility:a proteomic analysis of suppressed ovary activation[J]. Journal of Proteome Research, 2012, 11(5):2838-2850. [15]Woltedji D, Fang Y, Han B, et al. Proteome analysis of hemolymph changes during the larval to pupal development stages of honeybee workers(Apis mellifera ligustica)[J]. Journal of Proteome Research, 2013, 12(11):5189-5198. [16]Feng M, Ramadan H, Han B, et al. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees(Apis mellifera)and eastern honey bees(Apis cerana)[J]. BMC Genomics, 2014, 15:563. [17]Poland V, Eubel H, King M, et al. Stored sperm differs from ejaculated sperm by proteome alterations associated with energy metabolism in the honeybee Apis mellifera[J]. Molecular Ecology, 2011, 20(12):2643-2654. [18]Zareie R, Eubel H, Millar AH, et al. Long-term survival of high quality sperm:insights into the sperm proteome of the honeybee Apis mellifera[J]. Journal of Proteome Research, 2013, 12(11):5180-5188. [19]Baer B, Zareie R, Paynter E, et al. Seminal fluid proteins differ in abundance between genetic lineages of honeybees[J]. Journal of Proteomics, 2012, 75(18):5646-5653. [20]Parker R, Guarna MM, Melathopoulos AP, et al. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee(Apis mellifera)[J]. Genome Biology, 2012, 13(9):R81. [21]Ji T, Liu Z, Shen J, et al. Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann[J]. BMC Genomics, 2014, 15:665. [22] Feng M, Fang Y, Han B, et al. Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees(Apis mellifera)investigated by proteomics and phosphoproteomics[J]. Journal of Proteomics, 2013, 87:1-15. [23]Pratavieira M, da Silva Menegasso AR, Garcia AM, et al. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera)brain:effect of ontogeny[J]. Journal of Proteome Resarch, 2014, 13(6):3054-3064. [24]Chan QWT, Chan MY, Logan M, et al. Honey bee protein atlas at organ-level resolution[J]. Genome Research, 2013, 23(11):1951-1960. [25]Han B, Zhang L, Feng M, et al. An Integrated proteomics reveals pathological mechanism of honeybee(Apis cerena)Sacbrood Disease[J]. Journal of Proteome Research, 2013, 12:1881-1897. [26]Zhang Y, Zhang G, Huang X, et al. Proteomic analysis of Apis cerana and Apis mellifera larvae fed with heterospecific royal jelly and by CSBV challenge[J]. PLoS One, 2014, 9(8):e102663. [27]Vidau C, Panek J, Texier C, et al. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions[J]. Journal of Invertebrate Pathology, 2014, 121:89-96. [28]Roat TC, dos Santos-Pinto JR, Dos Santos LD, et al. Modification of the brain proteome of Africanized honeybees(Apis mellifera)exposed to a sub-lethal doses of the insecticide fipronil[J]. Ecotoxicology, 2014, 23(9):1659-1670. [29]Kamakura M. Royalactin induces queen differentiation in honeybees[J]. Nature, 2011, 473(7348):478-483. [30]Fujita T, Kozuka-Hata H, Ao-Kondo H, et al. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee[J]. Journal of Proteome Research, 2013, 12(1):404-411. [31]Han B, Li C, Zhang L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural and Food Chemistry, 2011, 59:10346-10355. [32]Zhang L, Fang Y, Li R, et al. Towards posttranslational modification proteome of royal jelly[J]. Journal of Proteomics, 2012, 12:5327-5341. [33]Han B, Fang Y, Feng M, et al. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species[J]. Journal of Proteome Research, 2014, 13(12):5928-5943. [34]Zhang L, Han B, Li R, et al. Comprehensive identification of novel proteins and N-glycosylation sites in royal jelly[J]. BMC Genomics, 2014, 15:135. [35] Resende VMF, Vasilj A, Santos KS, et al. Proteome and phosphoproteome of Africanized and European honeybee venoms[J]. Proteomics, 2013, 13(17):2638-2648. [36]Li R, Zhang L, Fang Y, et al. Proteome and phosphoproteome analysis of honeybee(Apis mellifera)venom collected from electrical stimulation and manual extraction of the venom gland[J]. BMC Genomics, 2013, 14:766. [37]Matysiak J, Hajduk J, Pietrzak L, et al. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies[J]. Toxicon, 2014, 90:255-264. [38]Matysiak J, Schmelzer CE, Neubert RH, et al. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54(2):273-278. [39]Van Vaerenbergh M, Debyser G, Devreese B, et al. Exploring the hidden honeybee(Apis mellifera)venom proteome by integrating a combinatorial peptide ligand library approach with FTMS[J]. Journal of Proteomics, 2014, 99:169-178. [40]Di Girolamo F, D’Amato A, Righetti PG. Assessment of the floral origin of honey via proteomic tools[J]. Journal of Proteomics, 2012, 75(12):3688-3693. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[3] | ZHAO Ming-ming, TANG Yin, GUO Lei-zhou, HAN Jia-hui, GE Jia-ming, MENG Yong, PING Shu-zhen, ZHOU Zheng-fu, WANG Jin. Function Analysis of Lon1 Protease Involved in High Temperature Stress and Cell Division of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2022, 38(5): 149-158. |
[4] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[5] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[6] | MENG Li-ná, PENG Chun-ying, LI Tie-dong, LI Bo-sheng. Proteomic ánálysis of Spiruliná plátensis in Response to ársenic Stress [J]. Biotechnology Bulletin, 2020, 36(4): 107-116. |
[7] | LI Kun, LIU Yue, HUANG Peng, YANG Zhi-fang, HU Qian, ZHANG Ying, LI Zhi-hong, LÜ Ye-hui, LIANG Le. Proteomics Study on Spermatogonia Differentiation in Mice [J]. Biotechnology Bulletin, 2020, 36(3): 168-176. |
[8] | ZHANG Liang, CHEN Xiao-qing, SONG Jia-yu, MAO Ran-ran, JIANG Qian-wen, LIN Xiang-min. Comparative Proteomics Analysis of Escherichia coli in Response to Barofloxacin Stress [J]. Biotechnology Bulletin, 2019, 35(3): 103-109. |
[9] | LAN Yu-ting, WANG Shuang-Lei, LI Zheng-zhen, FENG Jin-chao, WANG Xiao-dong, SHI Sha. Research Advances in Proteomics of Ammopiptanthus in Responses to Abiotic Stresses [J]. Biotechnology Bulletin, 2019, 35(1): 112-119. |
[10] | MU Yong-ying,GU Pei-ming,MA Bo,YAN Wen-xiu,WANG Dao-ping,PAN Ying-hong. Advancements in Quantitative Proteomics Technologies Based on Mass Spectrometry [J]. Biotechnology Bulletin, 2017, 33(9): 73-84. |
[11] | SHAO Gui-fang, ZHANG Fan, WANG Jiao, ZHAO Kai, MO Yun-rong, DENG Ming-hua. Research Progress on Male Sterility of Pepper [J]. Biotechnology Bulletin, 2017, 33(8): 7-13. |
[12] | ZHU Bei-bei, LI Xiang-yu, CHEN Huan, WANG Hong-juan, HOU Hong-wei, HU Qing-yuan. iTRAQ-based Quantitative Proteomic Analyses of Differentially Expressed Proteins in Nicotine-induced SH-SY5Y Cells [J]. Biotechnology Bulletin, 2017, 33(4): 90-97. |
[13] | SONG Yan-chao, An Fei-fei, Xue Jing-jing, Qin Yu-ling, Li Kai-mian, CHEN Song-bi. Proteomic Analysis on Tuberous Roots of Cassava Cultivar ZM-Seaside and Mosaic-leaf Mutation [J]. Biotechnology Bulletin, 2017, 33(3): 78-85. |
[14] | KONG De-kang, WANG Hong-qi, XU Jie, LIU Zi-li, WU Xiao-xiong. Applications of Genomics,Proteomics and Metabolomics in Microbial Degradation of PAHs [J]. Biotechnology Bulletin, 2017, 33(10): 46-51. |
[15] | CHEN Fei, ZHOU Tong, WEI Yu-jia, YANG Jing, DAI Chuan-chao. Establishment of Membrane Proteomics Platform with Two-dimensional Electrophoresis for Preparing Identifying Plasma Membrane Proteins from Atractylodes lancea [J]. Biotechnology Bulletin, 2016, 32(9): 72-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||