[1] Yarwood CE. Acquired tolerance of leaves to heat[J]. Science, 1961, 134(3483):941-942. [2] Havaux M, Greppin H, Strasser RJ. Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light:Analysis using in-vivo fluorescence, absorbance, oxygen and photoacoustic measurements[J]. Planta, 1991, 186(1):88-98. [3] Cheikh N, Jones RJ. Disruption of maize kernel growth and develop-ment by heat stress(role of cytokinin/abscisic acid balance)[J]. Plant Physiol, 1994, 106(1):45-51. [4] Michiels J, Verreth C, Vanderleyden J. Effects of temperature stress on bean-nodulating Rhizobium strains[J]. Appl Environ Microbiol, 1994, 60(4):1206-1212. [5] Grindstaff KK, Fielding LA, Brodl MR. Effect of gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers[J]. Plant Physiol, 1996, 110(2):571-581. [6] Beator J, Potter E, Kloppstech K. The effect of heat shock on morphogenesis in barley:coordinated circadian regulation of mRNA levels for light-regulated genes and of the capacity for accumulation of chlorophyll protein complexes[J]. Plant Physiol, 1992, 100(4):1780-1786. [7] Charng YY, Liu HC, Liu NY, et al. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation[J]. Plant Physiol, 2006, 140(4):1297-1305. [8] Charng YY, Liu HC, Liu NY, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiol, 2007, 143(1):251-262. [9] Moseley PL. Heat shock proteins and heat adaptation of the whole organism[J]. J Appl Physiol(1985), 1997, 83(5):1413-1417. [10] Shi J, Liu M, Shi J, et al. Reference gene selection for qPCR in Ammopiptanthus mongolicus under abiotic stresses and expression analysis of seven ROS-scavenging enzyme genes[J]. Plant Cell Reports, 2012, 31(7):1245-1249. [11] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266. [12] Wullschleger SD, Weston DJ, Difazio SP, et al. Revisiting the sequencing of the first tree genome:Populus trichocarpa[J]. Tree Physiol, 2013, 33(4):357-364. [13] 史军娜, 刘美芹, 师静, 等. 沙冬青GATA型锌指蛋白基因序列及表达分析[J]. 北京林业大学学报, 2011(3):21-25. [14] 刘佳杰, 林清芳, 李连国, 等. 蒙古沙冬青冷冻胁迫SMART cDNA文库的构建及序列分析[J]. 植物遗传资源学报, 2011(5):770-774. [15] 张锋, 王学峰, 董博, 等. 沙冬青AmDREB3基因的克隆及植物表达载体构建[J]. 内蒙古农业大学学报:自然科学版, 2012(Z1):133-134. [16] 王学峰, 李记园, 李连国, 等. 蒙古沙冬青胰蛋白酶抑制剂基因AmTI的克隆及其功能分析[J]. 内蒙古农业大学学报:自然科学版, 2012(2):103-108. [20] Pang T, Ye CY, Xia X, et al. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa[J]. BMC Genomics, 2013, 14(1):488. [21] Gu L, Cheng H. Isolation, molecular cloning and characterization of a cold-responsive gene, AmDUF1517, from Ammopiptanthus mongolicus[J]. Plant Cell, Tissue and Organ Culture(PCTOC). 2014,117(2):201-211. [22] Liu M, Lu C, Shen X, et al. Characterization and function analysis of a cold-induced AmCIP gene encoding a dehydrin-like protein in Ammopiptanthus mongolicus[J]. DNA Seq, 2006, 17(5):342-349. [23] Guo L, Yu Y, Xia X, et al. Identification and functional characteri-sation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus[J]. BMC Plant Biology, 2010, 10(1):1. [24] Liu R, Liu M, Liu J, et al. Heterologous expression of a Ammopipta-nthus mongolicuslate embryogenesis abundant protein gene(Am-LEA)enhances Escherichia coli viability under cold and heat stress[J]. Plant Growth Regulation, 2010, 60(2):163-168. [25] Wei Q, Guo Y, Cao H, et al. Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus<(Leguminosae)and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture, 2011, 105(3):309-306. [26] Chen J, Sun Y, Sun F, et al. Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1gene display enhanced tolerance to multiple abiotic stresses[J]. Plant Growth Regula-tion, 2011, 63(3):259-269. [27] 李晓东. 强旱生植物沙冬青AmDHN、AmERF基因克隆及转化甜菜的研究[D] . 呼和浩特:内蒙古农业大学, 2010. [28] 智冠华, 史军娜, 赵晓鑫, 等. 转沙冬青锌指蛋白基因AmZFPG烟草非生物胁迫抗性分析[J]. 园艺学报, 2013, 40(4):713-743. [29] 王艳萍, 刘美芹, 师静, 等. 沙冬青热胁迫相关蛋白基因AmHsa32超表达提高大肠杆菌的抗热性[J]. 北京林业大学学报, 2012(5):37-43. [30] Liu NY, Hsieh WJ, Liu HC, et al. Hsa32, a phosphosulfolactate synthase-related heatshock protein, is not involved in sulfolipid biosynthesis in Arabidopsis[J]. Botanical Studies, 2006(47):389-395. [31] Wu TY, Juan YT, Hsu YH, et al. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis[J]. Plant Physiol, 2013, 161(4):2075-2084. |