Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (9): 38-48.doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.006
• Review • Previous Articles Next Articles
Tian Hui, Liang Hongzhang, Huo Guicheng, Evivie Smich Ecareri
Received:
2014-11-14
Online:
2015-09-15
Published:
2015-09-16
Tian Hui, Liang Hongzhang, Huo Guicheng, Evivie Smich Ecareri. Research Progress on the Property and Application of Streptococcus thermophilus [J]. Biotechnology Bulletin, 2015, 31(9): 38-48.
[1] KEGG Organisms:Complete Genomes[EB/OL]. http://www.genome.jp/kegg/catalog/org_list.html. [2] Makarova K, Slesarev A, Wolf Y, et al. Comparative genomics of the lactic acid bacteria[J]. Proc Natl Acad Sci USA, 2006, 103(42):15611-15616. [3] El-Sharoud WM, Delorme C, Darwish MS, et al. Genotyping of Streptococcus thermophilus strains isolated from traditional Egyptian dairy products by sequence analysis of the phosphoserine phosphatase(serB)gene with phenotypic characterizations of the strains[J]. J Appl Microbiol, 2011, 112(2):329-337. [4] Delorme C. Safety assessment of dairy microorganisms:Streptococcus thermophilus[J]. Int J Food Microbiol, 2008, 126(3):274-277. [5] Tamine AY, Robinson RK. Yoghurt:science and technology[G]. Cambridge:Woodhead Publishing Limited, 2000. [6] Hols P, Hancy F, Fontaine L, et al. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics[J]. FEMS Microbiol Rev, 2005, 29(3):435-463. [7] Rasmussen TB, Danielsen M, Valina O, et al. Streptococcus thermophilus core genome:comparative genome hybridization study of 47 strains[J]. Appl Environ Microbiol, 2008, 74(15):4703-4710. [8] Schleifer KH, Ehrmann M, Krusch U, et al. Revival of the Species Streptococcus thermophilus(ex Orla-Jensen, 1919)nom. rev. [J]. Systematic and Applied Microbiology, 1991, 14(4):386-388. [9] Goh YJ, Goin C, O’Flaherty S, et al. Specialized adaptation of a lactic acid bacterium to the milk environment:the comparative genomics of Streptococcus thermophilus LMD-9[J]. Microb Cell Fact, 2011, 10(Suppl 1):S22. [10] Erkus O, Okuklu B, Yenidunya AF, et al. High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts[J]. LWT-Food Science and Technology, 2014, 58(2):348-354. [11]Mayo B, van Sinderen D, Ventura M. Genome analysis of food grade lactic Acid-producing bacteria:from basics to applications[J]. Curr Genomics, 2008, 9(3):169-183. [12] Bolotin A, Quinquis B, Renault P, et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus[J]. Nat Biotechnol, 2004, 22(12):1554-1558. [13] Prajapati JB, Nathani NM, Patel AK, et al. Genomic analysis of dairy starter culture Streptococcus thermophilus MTCC 5461[J]. J Microbiol Biotechnol, 2013, 23(4):459-466. [14] http://www.ncbi.nlm.nih.gov/genome/genomes/420[EB/OL]. [15] Callanan MJ, Ross RP. Starter Cultures:Genetics[M]. Academic Press, 2004. [16] Kang X, Ling N, Sun G, et al. Complete genome sequence of Streptococcus thermophilus strain MN-ZLW-002[J]. J Bacteriol, 2012, 194(16):4428-4429. [17] Sun Z, Chen X, Wang J, et al. Complete genome sequence of Streptococcus thermophilus strain ND03[J]. J Bacteriol, 2011, 193(3):793-794. [18] Delorme C, Bartholini C, Luraschi M, et al. Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232[J]. J Bacteriol, 2011, 193(19):5581-5582. [19] Wu Q, Tun HM, Leung FC, et al. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275[J]. Sci Rep, 2014, 4:4974. [20] Hols P, Hancy F, Fontaine L, et al. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics[J]. FEMS Microbiology Reviews, 2005, 29(3):435-463. [21] Derzelle S, Bolotin A, Mistou MY, et al. Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein[J]. Appl Environ Microbiol, 2005, 71(12):8597-8605. [22] Herve-Jimenez L, Guillouard I, Guedon E, et al. Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism[J]. Proteomics, 2008, 8(20):4273-4286. [23] Salzano AM, Arena S, Renzone G, et al. A widespread picture of the Streptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches[J]. Proteomics, 2007, 7(9):1420-1433. [24] Poolman B. Energy transduction in lactic acid bacteria[J]. FEMS Microbiol Rev, 1993, 12(1-3):125-147. [25] van den Bogaard PT, Kleerebezem M, Kuipers O P, et al. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus:evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar[J]. J Bacteriol, 2000, 182(21):5982-5989. [26] van den Bogaard PT, Hols P, Kuipers OP, et al. Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus[J]. Syst Appl Microbiol, 2004, 27(1):10-17. [27] Vaughan EE, van den Bogaard PT, Catzeddu P, et al. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus[J]. J Bacteriol, 2001, 183(4):1184-1194. [28] Vaillancourt K, LeMay JD, Lamoureux M, et al. Characterization of a galactokinase-positive recombinant strain of Streptococcus thermophilus[J]. Appl Environ Microbiol, 2004, 70(8):4596-4603. [29] Navarini L, Abatangelo A, Bertocchi C, et al. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20[J]. International Journal of Biological Macromolecules, 2001, 28(3):219-226. [30] Broadbent JR, McMahon DJ, Welker DL, et al. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus:a review[J]. J Dairy Sci, 2003, 86(2):407-423. [31] Iyer R, Tomar SK, Uma Maheswari T, et al. Streptococcus thermophilus strains:Multifunctional lactic acid bacteria[J]. International Dairy Journal, 2010, 20(3):133-141. [32] Stingele F, Neeser JR, Mollet B. Identification and characterization of the eps(Exopolysaccharide)gene cluster from Streptococcus thermophilus Sfi6[J]. J Bacteriol, 1996, 178(6):1680-1690. [33] Dandoy D, Fremaux C, de Frahan MH, et al. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS[J]. Microb Cell Fact, 2011, 10(Suppl 1):S21. [34] Anastasiou R, Papadelli M, Georgalaki MD, et al. Cloning and sequencing of the gene encoding X-prolyl-dipeptidyl aminopeptidase(PepX)from Streptococcus thermophilus strain ACA-DC 4[J]. J Appl Microbiol, 2002, 93(1):52-59. [35] 刘芳. CodY蛋白在嗜热链球菌蛋白水解系统调控中的作用[D]. 哈尔滨:东北农业大学, 2009. [36] 邓凯波, 霍贵成. 嗜热链球菌中CRISPR序列的检测与同源性分析[J]. 食品科学, 2013(3):153-157. [37] van de Guchte M, Penaud S, Grimaldi C, et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution[J]. Proc Natl Acad Sci USA, 2006, 103(24):9274-9279. [38] Sieuwerts S, Molenaar D, van Hijum SA, et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus[J]. Appl Environ Microbiol, 2010, 76(23):7775-7784. [39] Liu M, Siezen RJ, Nauta A. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus therm-ophilus reveals protocooperation in yogurt manufacturing[J]. Appl Environ Microbiol, 2009, 75(12):4120-4129. [40] Herve-Jimenez L, Guillouard I, Guedon E, et al. Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus:involvement of nitrogen, purine, and iron metabolism[J]. Appl Environ Microbiol, 2009, 75(7):2062-2073. [41] Thevenard B, Rasoava N, Fourcassie P, et al. Characterization of Streptococcus thermophilus two-component systems:In silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with its yogurt partner, Lactobacillus delbrueckii subsp. bulgaricus[J]. Int J Food Microbiol, 2011, 151(2):171-181. |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[4] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[5] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[6] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[7] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[8] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[9] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[10] | DU Dong-dong, QIAN Jing, LI Si-qi, LIU Wen-fei, WEI Xiang-li, LIU Chang-yong, LUO Rui-feng, KANG Li-chao. Whole Genome Sequencing and Analysis of Listeria monocytogenes Strain LMXJ15 [J]. Biotechnology Bulletin, 2023, 39(7): 298-306. |
[11] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[12] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[13] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[14] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[15] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||