Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (12): 56-62.doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.008
• Review • Previous Articles Next Articles
Zhao Yinghua1,2, Sun Wei1
Received:
2015-04-01
Online:
2015-12-19
Published:
2015-12-19
Zhao Yinghua, Sun Wei. Research Advances on the Applications of Hepatocellular Carcinoma Transgenic Mouse Models[J]. Biotechnology Bulletin, 2015, 31(12): 56-62.
[1] Stewart BW, Wild CP. World cancer report 2014[C]. International Agency for Research on Cancer, 2014. [2] Gordon JW, Ruddle FH. Germ line transmission in transgenic mice[J]. Progress in Clinical and Biological Research, 1981, 85:111-124. [3] Koike K, Moriya K, Iino S, et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice[J]. Hepatology, 1994, 19(4):810-819. [4] 吴一迁, 仇效坤. HBVx 转基因小鼠肝组织基因表达谱的微阵列研究[J]. 肿瘤, 2001, 21(4):235-238. [5] Madden CR, Finegold MJ, Slagle BL. Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions[J]. J Virol, 2001, 75(8):3851-3858. [6] Pollicino T, Terradillos O, Lecoeur H, et al. Pro-apoptotic effect of the hepatitis B virus X gene[J]. Biomed Pharmacother, 1998, 52(9):363-368. [7] Yu Z, Gao YQ, Feng H, et al. Cell cycle-related kinase mediates viral-host signalling to promote hepatitis B virus-associated hepatocarcinogenesis[J]. Gut, 2014, 63(11):1793-1804. [8] Quétier I, Brezillon N, Duriez M, et al. Hepatitis B virus HBx protein impairs liver regeneration through enhanced expression of IL-6 in transgenic mice[J]. J Hepatol, 2013, 59(2):285-291. [9] Wu YF, Fu SL, Kao CH, et al. Chemopreventive effect of silymarin on liver pathology in HBV X protein transgenic mice[J]. Cancer Res, 2008, 68(6):2033-2042. [10] Yamazaki K, Suzuki K, Ohkoshi S, et al. Temporal treatment with interferon-Β prevents hepatocellular carcinoma in hepatitis B virus X gene transgenic mice[J]. J Hepatol, 2008, 48(2):255-265. [11] Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice[J]. Cell, 1989, 59(6):1145-1156. [12] Koike K, Moriya K, Kimura S. Role of hepatitis C virus in the development of hepatocellular carcinoma:transgenic approach to viral hepatocarcinogenesis[J]. J Gastroenterol Hepatol, 2002, 17(4):394-400. [13] Kamegaya Y, Hiasa Y, Zukerberg L, et al. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis[J]. Hepatology, 2005, 41(3):660-667. [14] Benzoubir N, Lejamtel C, Battaglia S, et al. HCV core-mediated activation of latent TGF-Β via thrombospondin drives the crosstalk between hepatocytes and stromal environment[J]. J Hepatol, 2013, 59(6):1160-1168. [15] Fujinaga H, Tsutsumi T, Yotsuyanagi H, et al. Hepatocarcinogenesis in hepatitis C:HCV shrewdly exacerbates oxidative stress by modulating both production and scavenging of reactive oxygen species[J]. Oncology, 2011, 81(Suppl. 1):11-17. [16] Lou D Q, Molina T, Bennoun M, et al. Conditional hepatocarcinoge-nesis in mice expressing SV 40 early sequences[J]. Cancer Lett, 2005, 229(1):107-114. [17] Colvin EK, Weir C, Ikin RJ, et al. SV40 TAg mouse models of cancer[C]. Seminars in Cell & Developmental Biology. Academic Press, 2014, 27:61-73. [18] Runge A, Hu J, Wieland M, et al. An inducible hepatocellular carcinoma model for preclinical evaluation of anti-angiogenic therapy in adult mice[J]. Cancer Res, 2014, 74(15):4157-4169. [19] Willimsky G, Schmidt K, Loddenkemper C, et al. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance[J]. J Clin Invest, 2013, 123(3):1032-1043. [20] Boissan M, Wendum D, Arnaud-Dabernat S, et al. Increased lung metastasis in transgenic NM23-Null/SV40 mice with hepatocellular carcinoma[J]. J Natl Cancer Inst, 2005, 97(11):836-845. [21] Nambotin SB, Lefrancois L, Sainsily X, et al. Pharmacological inhibition of Frizzled-7 displays anti-tumor properties in hepatoce-llular carcinoma[J]. J Hepatol, 2011, 54(2):288-299. [22] Lee JS, Chu IS, Mikaelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer[J]. Nat Genet, 2004, 36(12):1306-1311. [23] Santoni-Rugiu E, Nagy P, Jensen MR, et al. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha[J]. Am J Pathol, 1996, 149(2):407-428. [24] Conner EA, Lemmer ER, Sánchez A, et al. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models[J]. Biochem Biophys Res Commun, 2003, 302(1):114-120. [25] Srivastava J, Siddiq A, Gredler R, et al. Astrocyte elevated gene-1(AEG-1)and c-Myc cooperate to promote hepatocarcinogenesis[J]. Hepatology, 2015, 61(3):915-929. [26] Harada N, Oshima H, Katoh M, et al. Hepatocarcinogenesis in mice with Β-catenin and Ha-ras gene mutations[J]. Cancer Res, 2004, 64(1):48-54. [27] Stauffer JK, Scarzello AJ, Andersen JB, et al. Coactivation of AKT and Β-catenin in mice rapidly induces formation of lipogenic liver tumors[J]. Cancer Res, 2011, 71(7):2718-2727. [28] Dong B, Lee JS, Park YY, et al. Activating CAR and Β-catenin induces uncontrolled liver growth and tumorigenesis[J]. Nat Commun, 2015, 6:5944. [29] Borlak J, Meier T, Halter R, et al. Epidermal growth factor-induced hepatocellular carcinoma:gene expression profiles in precursor lesions, early stage and solitary tumors[J]. Oncogene, 2005, 24(11):1809-1819. [30] Liedtke C, Zschemisch NH, Cohrs A, et al. Silencing of caspase-8 in murine hepatocellular carcinomas is mediated via methylation of an essential promoter element[J]. Gastroenterology, 2005, 129(5):1602-1615. [31] Gazzana G, Borlak J. Mapping of the serum proteome of hepatocellular carcinoma induced by targeted overexpression of epidermal growth factor to liver cells of transgenic mice[J]. J Proteome Res, 2008, 7(3):928-937. [32] Watanabe S, Horie Y, Kataoka E, et al. Non-alcoholic steatohepatitis and hepatocellular carcinoma:Lessons from hepatocyte-specific phosphatase and tensin homolog(PTEN)-deficient mice[J]. J Gastroenterol Hepatol, 2007, 22(s1):S96-S100. [33] Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522):380-384. [34] Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research[J]. Int J Exp Pathol, 2009, 90(4):367-386. [35] Koo JS, Seong JK, Park C, et al. Large liver cell dysplasia in hepatitis B virus X transgenic mouse liver and human chronic hepatitis B virus-infected liver[J]. Intervirology, 2005, 48(1):16-22. [36] Zheng YY, Chen WL, Louie SG, et al. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice[J]. Hepatology, 2007, 45(1):16-21. [37] Lau CC, Sun T, Ching AKK, et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression[J]. Cancer Cell, 2014, 25(3):335-349. [38] Tanaka N, Moriya K, Kiyosawa K, et al. Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor α in transgenic mice:Implications for HCV-associated hepatocarcinogenesis[J]. Int J Cancer, 2008, 122(1):124-131. [39] Nevzorova YA, Hu W, Cubero FJ, et al. Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis[J]. Biochim Biophys Acta, 2013, 1832(10):1765-1775. [40] Griffitts J, Tesiram Y, Reid GE, et al. In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model[J]. J Lipid Res, 2009, 50(4):611-622. [41] Coulouarn C, Factor VM, Conner EA, et al. Genomic modeling of tumor onset and progression in a mouse model of aggressive human liver cancer[J]. Carcinogenesis, 2011, 32(10):1434-1440. [42] Tward AD, Jones KD, Yant S, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver[J]. Proc Natl Acad Sci USA, 2007, 104(37):14771-14776. [43] Wang R, Ferrell LD, Faouzi S, et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice[J]. J Cell Biol, 2001, 153(5):1023-1034. [44] Rogler CE, Yang D, Rossetti L, et al. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice[J]. J Biol Chem, 1994, 269(19):13779-13784. [45] Nicholes K, Guillet S, Tomlinson E, et al. A mouse model of hepatocellular carcinoma:ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice[J]. Am J Pathol, 2002, 160(6):2295-2307. [46] Okada H, Honda M, Campbell JS, et al. Acyclic retinoid targets platelet-derived growth factor signaling in the prevention of hepatic fibrosis and hepatocellular carcinoma development[J]. Cancer Res, 2012, 72(17):4459-4471. [47] Martínez-Chantar ML, Vázquez-Chantada M, Ariz U, et al. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice[J]. Hepatology, 2008, 47(4):1191-1199. [48] Li Y, Tang ZY, Hou JX. Hepatocellular carcinoma:insight from animal models[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(1):32-43. [49] Bakiri L, Wagner EF. Mouse models for liver cancer[J]. Mol Oncol, 2013, 7(2):206-223. |
[1] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[2] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[3] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[4] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[5] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[6] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[7] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[8] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
[9] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[10] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[11] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[12] | FENG Cui-lian, WAN Yue, WANG Jun-gang, FENG Xiao-yan, ZHAO Ting-ting, WANG Wen-zhi, SHEN Lin-bo, ZHANG Shu-zhen. Establishment of a Transformant-specific Detection Method for Cry1Ac-2A-gna Transgenic Sugarcane BCG-17 [J]. Biotechnology Bulletin, 2021, 37(5): 248-258. |
[13] | LI Cong-cong, Xie Ping, DONG Li-ming, XIA Wei, LAN Qing-kuo, YAN Wei, LONG Li-kun, LI Fei-wu. Qualitative PCR Assay for the Detection of GH5112E-117C Transgenic Maize Resistant to Insects and Herbicides [J]. Biotechnology Bulletin, 2020, 36(5): 64-67. |
[14] | ZHAO Xu-dong, HUANG Yong-zhi, BI Yan-zhen, DONG Fa-ming. Strategies for Efficient Exogenous Gene Expression in Transgenic Animals [J]. Biotechnology Bulletin, 2020, 36(3): 45-53. |
[15] | LAN Qing-kuo, ZHAO Xin, SHEN Xiao-ling, WEI Jing-na, LIU Shuang, CHEN Rui, TAN Jian-xin, WANG Yong. Biosafety Assessment Technology Research for Genetically Modified Rice Based on Metabolomics [J]. Biotechnology Bulletin, 2020, 36(11): 222-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||