Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (12): 63-69.doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.009
• Review • Previous Articles Next Articles
Zhan Shenbiao, Tang Mingqing, Gan Na, Cao Yuanqing, Li Zhaofa
Received:
2015-02-10
Online:
2015-12-19
Published:
2015-12-19
Zhan Shenbiao, Tang Mingqing, Gan Na, Cao Yuanqing, Li Zhaofa. Research Progress Regarding to Large-scale Packaging System of rAAV[J]. Biotechnology Bulletin, 2015, 31(12): 63-69.
[1] Hüser D, Gogol-D?ring A, Lutter T, et al. Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome[J]. PLoS Pathogens, 2010, 6:e1000985. [2] van der Laan LJ, Wang Y, Tilanus HW, et al. AAV-mediated gene therapy for liver diseases:the prime candidate for clinical application?[J]. Expert Opinion on Biological Therapy, 2011, 11:315-327. [3]许瑞安, 肖卫东. 分子基因药物学[M]. 北京:北京大学医学出版社, 2008. [4]王启钊, 吕颖慧, 肖卫东, 等. 重组腺相关病毒载体临床实验研究[J]. 中国生物工程杂志, 2010, 30:73-79. [5]Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus[J]. Proceedings of the National Academy of Sciences, 2010, 107:10220-10225. [6]Sonntag F, K?ther K, Schmidt K, et al. The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes[J]. Journal of Virology, 2011, 85:12686-12697. [7]Backovic A, Cervelli T, Salvetti A, et al. Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2012, 11:124. [8]Wistuba A, Kern A, Weger S, et al. Subcellular compartmentalization of adeno-associated virus type 2 assembly[J]. Journal of Virology, 1997, 71:1341-1352. [9]Hoque M, Ishizu KI, Matsumoto A, et al. Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation[J]. Journal of Virology, 1999, 73:7912-7915. [10]Ruffing M, Zentgraf H, Kleinschmidt J. Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells[J]. Journal of Virology, 1992, 66:6922-6930. [11] Warrington KH, Gorbatyuk OS, Harrison JK, et al. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus[J]. Journal of Virology, 2004, 78:6595-6609. [12] Bleker S, Pawlita M, Kleinschmidt JA. Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging[J]. Journal of Virology, 2006, 80:810-820. [13]Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus[J]. Journal of Virology, 2009, 83:2632-2644. [14]Bevington JM, Needham PG, Verrill KC, et al. Adeno-associated virus interactions with B23/Nucleophosmin:identification of sub-nucleolar virion regions[J]. Virology, 2007, 357:102-113. [15]DiPrimio N, Asokan A, Govindasamy L, et al. Surface loop dynamics in adeno-associated virus capsid assembly[J]. Journal of Virology, 2008, 82:5178-5189. [16]Bleker S, Sonntag F, Kleinschmidt JA. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity[J]. J Virol, 2005, 79(4):2528-2540. [17]陈雅宁, 王春荣, 杨宗灿, 等. Bac-to-Bac杆状病毒昆虫表达系统介导的重组腺相关病毒制备[J]. 中华实验外科杂志, 2012, 29:1363-1366. [18]Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors[J]. Human Gene Therapy, 2002, 13:1935-1943. [19]王峰, 刁勇, 肖卫东, 等. 重组腺相关病毒规模化生物包装技术[J]. 生物工程学报, 2009, 25:1608-1613. [20]Dong B, Moore AR, Dai J, et al. A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy[J]. Nucleic Acids Research, 2013, 41:6609-6617. [21]Mingozzi F, Maus MV, Hui DJ, et al. CD8+T-cell responses to adeno-associated virus capsid in humans[J]. Nature Medicine, 2007, 13:419-422. [22] Pien GC, Basner-Tschakarjan E, Hui DJ, et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors[J]. The Journal of Clinical Investigation, 2009, 119:1688-1695. [23] Allay JA, Sleep S, Long S, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial[J]. Human Gene Therapy, 2011, 22:595-604. [24] Moss B, Earl PL. Overview of the vaccinia virus expression system[J]. Current Protocols in Protein Science, 1998, 16.15.1-16.15.5. [25] Halbert CL, Metzger MJ, Lam SL, et al. Capsid-expressing DNA in AAV vectors and its elimination by use of an oversize capsid gene for vector production[J]. Gene Therapy, 2011, 18:411-417. [26] Qiao C, Li J, Skold A, et al. Feasibility of generating adeno-associated virus packaging cell lines containing inducible adenovirus helper genes[J]. Journal of Virology, 2002, 76:1904-1913. [27]Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells[J]. Molecular Therapy, 2009, 17:1888-1896. [28]Wright J, Qu G, Tang C, et al. Recombinant adeno-associated virus:formulation challenges and strategies for a gene therapy vector[J]. Current Opinion in Drug Discovery & Development, 2003, 6:174-178. [29]Lock M, Alvira M, Vandenberghe LH, et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale[J]. Human Gene Therapy, 2010, 21:1259-1271. [30]Clément N, Knop DR, Byrne BJ. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies[J]. Human Gene Therapy, 2009, 20:796-806. [31]Qiao C, Wang B, Zhu X, et al. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines[J]. Journal of Virology, 2002, 76:13015-13027. [32]Lu H, Qu G, Yang X, et al. Systemic elimination of de novo capsid protein synthesis from replication-competent AAV contamination in the liver[J]. Human Gene Therapy, 2011, 22:625-632. [33]Zaiss A, Muruve D. Immunity to adeno-associated virus vectors in animals and humans:a continued challenge[J]. Gene Therapy, 2008, 15:808-816. [34]Farris KD, Pintel DJ. Improved splicing of adeno-associated viral(AAV)capsid protein-supplying pre-mRNAs leads to increased recombinant AAV vector production[J]. Human Gene Therapy, 2008, 19:1421-1427. [35]Wang J, Xie J, Lu H, et al. Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction[J]. Proceedings of the National Academy of Sciences, 2007, 104:13104-13109. |
[1] | LIU Meng-meng, HAN Li-jun, LIU Bao-ling, XUE Jin-ai, LI Run-zhi. Cloning and Expression Analysis of GhSDP1 and Its Promoter in Gossypium hirsutum [J]. Biotechnology Bulletin, 2022, 38(2): 34-43. |
[2] | WU Kun-kun, XU Xing, JI Ce, REN Jian-feng, LI Wei-ming, ZHANG Qing-hua. Eukaryotic Expression Vector Construction of Danio rerio notch3 Gene and Its Expression Analysis [J]. Biotechnology Bulletin, 2022, 38(1): 179-186. |
[3] | HU Zi-yao, DAI Pei-hong, LIU Chao, Madina Mulati, WANG Qian, Wugalihan Abuduwili, ZHAO Yi, SUN Ling, XU Shi-jia, LI Yue. Molecular Cloning,Expression and VIGS Construction of a Small GTP-binding Protein Gene GhROP3 in Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(9): 106-113. |
[4] | GAO Peng-fei, XI Fei-hu, ZHANG Ze-yu, HU Kai-qiang, CHEN Kai, WEI Wen-tao, DING Jia-zhi, GU Lian-feng. Research Progress of Plant VIGS Technology and Its Application in Forestry Science [J]. Biotechnology Bulletin, 2021, 37(5): 141-153. |
[5] | GONG Yuan-yong, ZHAO Li-hua, YAN Fei, GUO Shu-qiao, SHU Hong-mei, NI Wan-chao. Construction and Transformation of Borago officinalis BoD6D Gene Vector [J]. Biotechnology Bulletin, 2021, 37(3): 227-232. |
[6] | SUN Jing-shuang, HU Rui-yang, ZHENG Guang-shun, MA Wen-jun, XU Yan, WANG Jun-hui. Research Progress and Prospect of Plant Genetic Transformation Mediated by Nano-gene Vector [J]. Biotechnology Bulletin, 2021, 37(2): 162-173. |
[7] | HU Xiao, WANG Bao-bao, DOU Shao-hua, JIANG Nan, FU Chang-zhen, JIN Hang, GAO Feng-shan. Construction of a Eukaryotic Expression Vector of SLA-2 Gene from Yantai Black Pigs and Its Expression [J]. Biotechnology Bulletin, 2021, 37(10): 143-151. |
[8] | WANG Cai-xia, DU Fang-yuan, LIN Xiang-mei, Grzegorz Wozniakowski, WANG Qin, FENG Chun-yan, WU Shao-qiang. Generation of a Vero Cell Line Stably Expressing African Swine Fever Virus P54 Protein [J]. Biotechnology Bulletin, 2020, 36(5): 139-144. |
[9] | YANG Wen-wen, NI Jia-yao, HU Rui-jie, WANG Hua-zhong. A Sequencing Strategy for Inverted Repeats in RNAi Vectors [J]. Biotechnology Bulletin, 2020, 36(5): 205-210. |
[10] | YANG Yue, GAO Jun-ru, YANG Liu. Research Progress on CRISPR Technology in Biology and Medical Science [J]. Biotechnology Bulletin, 2020, 36(3): 38-44. |
[11] | MENG Li, DU Cai-ping. Eukaryotic Expression,Purification and Activity Identification of Rat His-Akt1 Recombinant Protein [J]. Biotechnology Bulletin, 2020, 36(12): 98-103. |
[12] | CHEN He-feng, ZHU Chao-yi, LI Shuang. Expression Vector Adaptation of Valencene-producing Saccharomyces cerevisiae and Optimization of Fermentation Carbon and Nitrogen Sources [J]. Biotechnology Bulletin, 2020, 36(1): 209-219. |
[13] | HAN Cui-cui, LIU Li-kun, WANG Yu-chun, YANG Ying, LIU Ji-cheng, ZHOU Zhong-guang. Construction of TOX3 Gene Lentiviral RNA Interference Vector and Effect on Proliferation of Human Breast Cancer Cells ZR-75-1 [J]. Biotechnology Bulletin, 2019, 35(7): 141-147. |
[14] | WANG Jia-yue, LIU Xiang-nan, PENG Kang-li, ZHAO Bo. Construction and Identification of Lentiviral Vector for RNA Interference of USE1 Gene [J]. Biotechnology Bulletin, 2019, 35(3): 117-122. |
[15] | MO Xian-lan, SHI Lie-qin, LU Qiu-li, WANG Xiao-min, REN Zhen-xin. Expression Analysis of Sl-miR482 in Tomato Fruit and the Construction of STTM Silencing Vector [J]. Biotechnology Bulletin, 2019, 35(12): 50-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||