Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (3): 38-44.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0147
Previous Articles Next Articles
YANG Yue1, 2, GAO Jun-ru3, YANG Liu1, 2
Received:
2019-02-25
Online:
2020-03-26
Published:
2020-03-17
YANG Yue, GAO Jun-ru, YANG Liu. Research Progress on CRISPR Technology in Biology and Medical Science[J]. Biotechnology Bulletin, 2020, 36(3): 38-44.
[1] Ran FA, Hsu PD, Wright J, et al.Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11):2281-2308. [2] Knott GJ, Doudna JA.CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866. [3] Kieper SN, Almendros C, Behler J, et al.Cas4 facilitates PAM-compatible spacer selection during CRISPR adaptation[J]. Cell Reports, 2018, 22(13):3377-3384. [4] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. [5] Jinek M, East A, Cheng A, et al.RNA-programmed genome editing in human cells[J]. eLife, 2013, 2:e00471. [6] Hu JH, Miller SM, Geurts MH, et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63. [7] Teng F, Cui T, Feng G, et al.Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4:63. [8] Harrington LB, Burstein D, Chen JS, et al.Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839. [9] Liu JJ, Orlova N, Oakes BL, et al.CasX enzymes comprise a distinct family of RNA-guided genome editors[J]. Nature, 2019, 556:218-223. [10] Komor AC, Kim YB, Packer MS, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [11] Kim YB, Komor AC, Levy JM, et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4):371-376. [12] Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Science Advances, 2017, 3(8):eaao4774. [13] Li X, Wang Y, Liu Y, et al.Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36:324. [14] Gaudelli NM, Komor AC, Rees HA, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [15] East-Seletsky A, O’connell MR, Knight SC, et al.Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273. [16] Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al.RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675):280-284. [17] Konermann S, Lotfy P, Brideau NJ, et al.Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors[J]. Cell, 2018, 173(3):665-676. [18] Scotti MM, Swanson MS.RNA mis-splicing in disease[J]. Nature Reviews Genetics, 2016, 17(1):19-32. [19] 王影, 李相敢, 邱丽娟. CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J]. 植物学报, 2018, (4):528-541. [20] Ihry RJ, Worringer KA, Salick MR, et al.p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells[J]. Nature Medicine, 2018, 24(7):939-946. [21] Haapaniemi E, Botla S, Persson J, et al.CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nature Medicine, 2018, 24(7):927-930. [22] Cullot G, Boutin J, Toutain J, et al.CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations[J]. Nature Communications, 2019, 10(1):1136-1136. [23] Kosicki M, Tomberg K, Bradley A.Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36:765. [24] Kim D, Bae S, Park J, et al.Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12:237-243. [25] Jin S, Zong Y, Gao Q, et al.Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295. [26] Rossidis AC, Stratigis JD, Chadwick AC, et al.In utero CRISPR-mediated therapeutic editing of metabolic genes[J]. Nature Medicine, 2018, 24(10):1513-1518. [27] Villiger L, Grisch-Chan HM, Lindsay H, et al.Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J]. Nature Medicine, 2018, 24(10):1519-1525. [28] Zuo E, Sun Y, Wei W, et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019:eaav9973. [29] Liang P, Xie X, Zhi S, et al.Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nature Communications, 2019, 10(1):67-67. [30] Kim D, Kim DE, Lee G, et al.Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019. [31] Kim K, Ryu SM, Kim ST, et al.Highly efficient RNA-guided base editing in mouse embryos[J]. Nat Biotechnol, 2017, 35:435. [32] Yan S, Tu Z, Liu Z, et al. A huntingtin knockin pig model recapitu-lates features of selective neurodegeneration in huntington’s dise-ase[J]. Cell, 2018, 173(4):989-1002. e13. [33] Yang W, Liu Y, Tu Z, et al.CRISPR/Cas9-mediated PINK1 dele-tion leads to neurodegeneration in rhesus monkeys[J]. Cell Research, 2019, 29(4):334-336. [34] Sheth RU, Yim SS, Wu FL, et al.Multiplex recording of cellular events over time on CRISPR biological tape[J]. Science, 2017, 358(6369):1457-1461. [35] Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells[J]. Science, 2018, 360(6385):eaap8992. [36] Spanjaard B, Hu B, Mitic N, et al.Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars[J]. Nat Biotechnol, 2018, 36(5):469-473. [37] Mikheikin A, Olsen A, Leslie K, et al.DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle[J]. Nature Communications, 2017, 8(1):1665. [38] Rogers ZN, Mcfarland CD, Winters IP, et al.Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice[J]. Nature Genetics, 2018, 50(4):483-486. [39] Eyquem J, Mansilla-Soto J, Giavridis T, et al.Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643):113-117. [40] Beyret E, Liao HK, Yamamoto M, et al.Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3):419-422. [41] Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy[J]. Nature Medicine, 2019, 25(3)427-432. [42] Yin L, Hu S, Mei S, et al.CRISPR/Cas9 inhibits multiple steps of HIV-1 infection[J]. Hum Gene Ther, 2018, 29(11):1264-1276. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[15] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 431
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||