[1] Stanley D, Bandara A, Fraser S, et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae[J]. Appl Microbiol, 2010, 109(1):13-24. [2]Suutari M, Liukkonen K, Laakso S. Temperature adaptation in yeast:the role of fatty acids[J]. Gen Appl Microbiol, 1990, 136(1):1469-1474. [3]Benschoter AS, Ingram O. Thermal tolerance of Zymomonas mobilis:Temperature-induced changes in membrane composition[J]. Appl Environ Microb, 1986, 6(4):1278-1284. [4]Lindquist S, Kim G. Heat shock protein 104 expression is sufficient for thermotolerance in yeast[J]. Proc Natl Acad Sci USA, 1996, 93(3):5301-5306. [5]Hottiger T, Virgilio C, Hall M N, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast[J]. Eur J Biochem, 2005, 219(10):187-193. [6]Belloch C, Orlic S, Barrio E, et al. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex[J]. Int J Food Microbiol, 2008, 122(3):188-195. [7] Griffin TJ, Aebersold R, Chem JB. Advances in Proteome Analysis by Mass Spectrometry[J]. Molecular and Cellular Biology, 2001, 276(2):45497-45500. [8] 姚继兵, 祖国仁, 朴永哲, 等. 不同传代次数的酿酒酵母细胞壁蛋白组学分析[J]. 微生物学通报, 2013, 40(11):1962-1969. [9]季杨杨, 朴永哲, 袁方, 等. 不同传代次数酿酒酵母细胞内蛋白质组学分析[J]. 食品科技, 2014, 9(7):26-30. [10]程君升, 毛开荣, 丁家波, 等. 微量Bradford法测定提纯禽结核菌素蛋白含量[J]. 中国兽药杂志, 2007, 41(6):9-11. [11]Bienz M, Pelham HR. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter[J]. Cell, 1986, 45(3), 753-760. [12]Hartl FU. Molecular chaperones in cellular protein folding[J]. Nature, 1996, 3(8):571-580. [13]Mayer M, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism[J]. Cell Mol Life Sci, 2005, 62(6):670-684. [14] Lopez JL, Chaffin WL. Member of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1996, 180(2):4724-4726. [15]Sharma D, Masion CN. Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects[J]. Genetics, 2008, 179(3):1301-1311. [16]Harold FM, Bacteriol H. Inorganic polyphosphates in biology:structure, metabolism, and function[J]. Bacteriol Rev, 1966, 30(4):772-778. [17] Yoon HS, Kim SY, Kim S. Stess response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae:a potentially useful mechanism for the development of stress-tolerant organisms[J]. J App l Genetics, 2013, 3(54):129-133. [18] Terkeltaub RA. Inorganic pyrophosphate generation and disposition in pathophysiology[J]. Physiol Cell Physiol, 2001, 281(1):C1-C11. [19]Larsson C, Pahlman I, Gustafsson L. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae[J]. Yeast, 2000, 16(3):797-809. [20] Giardina BJ, Chiang HL. Fructose-1, 6-bisphosphatase, malate de-hydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin a are secreted in Saccharomyces cerevisiae grown in low glucose[J]. Communicative&Integrative Biology, 2013, 6(6):234-238. [21] Pardo M, Monteoliva L, Pla J, et al. Two-dimensional analysis of pr-oteins secreted by Saccharomyces cerevisiae regenerating protoplasts a novel approach to study the cell wall[J]. Yeast, 1999, 5(43):459-472. [22] Endo T, Mitsui S, Nakai M, et al. Binding of tochondrial presequen-ces to yeast cytosolic heat shock protein70 depends on the a mphip-hilicity of the presequence[J]. Journal of Biological Chemistry, 1996, 271(8):4161-4167. [23]Baudin A. simple and efficient method of direct gene deletion in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1993, 21(2):3329-3330. |