Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (3): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.002
• Review • Next Articles
WEI Ming-ming, LI Wei-guo, GAO Xin-sheng, HUANG Xiao
Received:
2015-04-14
Online:
2016-03-24
Published:
2016-03-25
WEI Ming-ming, LI Wei-guo, GAO Xin-sheng, HUANG Xiao. Research Progress of the Physiological and Molecular Regulation Mechanism of Hevea brasiliensis in Response to Ethephon Stimulation[J]. Biotechnology Bulletin, 2016, 32(3): 1-11.
[1]柯佑鹏, 过建春. 中国天然橡胶安全问题的探讨[J]. 林业经济问题, 2007, 27(3):199-205. [2]黄学全. 浅析海南垦区提高橡胶生产潜力的可能性及途径[J]. 热带农业科学, 2008, 28(5):55-58. [3]Sainoi T, Sdoodee S. The impact of ethylene gas application on young tapping rubber trees[J]. Journal of Agricultural Technology, 2012, 8(4):1497-1507. [4]Pujade-Renaud V, Clement A, Perrot-Recbenmann C, et al. Ethylene induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells[J]. Plant Physiol, 1994, 105(1):127-132. [5]中华人民共和国农业部. 中华人民共和国农业行业标准——橡胶树割胶技术规程[S]. 北京:中国标准出版社, 2006. [6]Lacote R, Gabla O, Obouayeba S, et al. Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry[J]. Field Crops Research, 2010, 115(1):94-98. [7]Chen SC, Peng SQ, Huang GX, et al. Association of decreased expression of a Myb transcription factor with the TPD(tapping panel dryness)syndrome in Hevea brasiliensis[J]. Plant Mol Biol, 2003, 51(1):51-58. [8]Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annu Rev Cell Dev Biol, 2000, 16(1):1-18. [9]Dietz KJ, Vogel M, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Proto Plasma, 2010, 245(1-4):3-14. [10]Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432. [11]Sakuma Y, Liu Q, Dubouzet J, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression[J]. Biochemical Biophyisical Res Comm, 2002, 290(3):998-1009. [12]Kuswanhadi, Leclercq J, Rio M, et al. Isolation of three members of the multigene family encoding ACC oxidases in Hevea brasiliensis and investigation of their responses to ethylene stimulation and wounding[J]. Journal of Rubber Research, 2010, 13(3):185-205. [13]Dusotoit-Coucaud A, Porcheron B, Brunel N, et al. Cloning and characterization of a new polyol transporter(HbPLT2)in Hevea brasiliensis[J]. Plant Cell Physiol, 2010, 51(11):1878-1888. [14]Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, et al. Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production[J]. Ann Bot, 2009, 104(4):635-647. [15]Duan C, Argout X, Gebelin V, et al. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing[J]. BMC Genomics, 2013, 14(30):1-22. [16]Piyatrakul P, Putranto RA, Martin F, et al. Some ethylene biosynth-esis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis[J]. BMC Plant Biol, 2012, 12(1):1-20. [17]Wu HL, Yu B, Cheng QQ, et al. Cloning and characterization of jasmonic acid-induced AP2/EREBP genes in laticifer from rubber tree(Hevea brasiliensis Muell. Arg. )[J]. Chi Agr Sci Bul, 2010, 26(5):28-293. [18]Chen YY, Wang LF, Dai LJ, et al. Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg. [J]. Arg Mol Biol Rep, 2012, 39(4):3713-3719. [19]Chrestin H, Gidrol X, Kush A. Towards a latex molecular diagnostic of yield potential and the genetic engineering of the rubber tree[J]. Euphytica, 1997, 96(1):77-82. [20]邹智, 杨礼富, 王真辉, 等. 橡胶树中橡胶的生物合成与调控[J]. 植物生理学通讯, 2009, 12(45):1231-1238. [21]Adam KP, Zapp J. Biosynthesis of the isoprene units of chamomile sesquiterpenes[J]. Phytochemistry, 1998, 48(6):953-959. [22]Chow KS, Mat-Isa MN, Bahari A, et al. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex[J]. Journal of Exp Bot, 2011, 363(10):1-9. [23]D’ Auzac J, Jacob JL, Prév?t JC, et al. The regulation of cis-polyis-oprene production(natural rubber)from Hevea brasiliensis[J]. Rec Pla Phy, 1997, 10(1):273-332. [24]Sainoi T, Sdoodee S. The impact of ethylene gas application on young tapping rubber trees[J]. Journal of Agricultural Technology, 2012, 8(4):1497-1507. [25]Tupy J. The regulation of invertase activity in the latex of Hevea brasiliensis[J]. J Exp Bot, 1973, 24(3):516-524. [26]Jetro NN, Simon GM. Effects of 2-chloroethylphosphonic acid formulations as yield stimulants on Hevea brasiliensis[J]. African Journal of Biotechnology, 2007, 6(5):523-528. [27]Duan C, Rio M, Leclercq J, et al. Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliensis[J]. Tree Physiol, 2010, 30(10):1349-1359. [28]Tang C, Huang D, Yang J, et al. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis(para rubber tree)[J]. Plant Cell Environ, 2010, 33(10):1708-1720. [29]Tupy J. The activity of latex invertase and latex production of Hevea brasiliensis[J]. Physiol Veg, 1973, 11(4):633-641. [30]Gidrol X, Chrestin H, Tan HL. Hevein, a lectin-like protein from Hevea brasiliensis(rubber tree)is involved in the coagulation of latex[J]. J Biol Chem, 1994, 269(12):9278-9283. [31]Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, et al. Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production[J]. Ann Bot, 2009, 104(4):635-647. [32]黄德宝. 巴西橡胶树蔗糖转运蛋白基因的克隆和表达分析[D]. 海口:海南大学, 2009. [33]李和平. 巴西橡胶树蔗糖转运蛋白基因HbSUT5的表达特性研究[D]. 海口:海南大学, 2010. [34]陈鑫. 巴西橡胶树HbCDPK1基因的克隆与功能分析[D]. 海口:海南大学, 2011. [35]张福城, 陈守才. 巴西橡胶树天然橡胶生物合成中关键酶及相关基因研究进展[J]. 热带农业科学, 2006, 26(1):42-46. [36]Sookmark U, Pujode-Renaud V, Chrestin H. Characterization of polypeptides accumulated in the latex cytosol of rubber tree affected by the tapping panel dryness syndrome[J]. Plant Cell Phy, 2002, 43(11):1323-1333. [37]刘宽灿, 杨云, 赵丽红, 张治礼. 乙烯利诱导橡胶树胶乳cDNA 消减文库的构建[J]. 热带作物学报, 2007, 4(3):1-4. [38]Oh SK, Kang H, Shin DH. Isolation, characterization and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis[J]. Journal of Biol Chem, 1999, 274(24):17132-17138. [39]Adiwilaga K, Kush A. Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree(Hevea brasiliensis)[J]. Plant Mol Bio, 1996, 30(5):935-946. [40]Suwanmanee P, Sirinupong N, Suvachittanont W. Regulation of the expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene in Hevea brasiliensis(B. H. K. )Mull. Arg[J]. Plant Sci, 2004, 66:531-537. [41]Sando T, Takeno S, Watanabe N, et al. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phos-phate(MEP)pathway genes of a natural-rubber producing plant, Hevea brasiliensis[J]. Biosci Biotechnol Biochem, 2008, 72(11):2903-2917. [42]陈洁, 雷美玉, 李辉亮, 等. 巴西橡胶树HbCMK基因的克隆及表达[J]. 西北植物学报, 2009, 29:215-220. [43]李辉亮, 雷美玉, 彭世清. 巴西橡胶树4-羟基-3-甲基-2-(E)-丁烯基-4-磷酸还原酶基因(HbHDR)的克隆及表达分析[J]. 基因组学与应用生物学, 2009, 28:15-21. [44]庄海燕, 安锋, 张硕新, 白登忠. 乙烯利刺激橡胶树增产机制研究进展[J]. 林业科学, 2010, 46(4):120-125. [45]李明. 乙烯刺激橡胶树胶乳多肽差异表达研究[D]. 海口:海南大学, 2010. [46]Ko JH, Chow KS, Han KH. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis(para rubber tree)[J]. Plant Mol Bio, 2003, 53(4):479-492. [47]黄瑾, 校现周. 乙烯利和乙烯刺激对橡胶树胶乳中几丁质酶活性和胶乳产量的影响[J]. 热带作物学报, 2003, 24(4):1-5. [48]Miao Z, Gaynor JJ. Molecular cloning, characterization and expression of Mn-superoxide dismutase from the rubbertree(Hevea brasiliensis)[J]. Plant Mol Biol, 1993, 23:267-277. [49]吴瑞. 巴西橡胶树金属硫蛋白基因HbMT2的克隆及功能分析[D]. 海口:海南大学, 2010. [50]范思伟, 杨少琼. 巴西橡胶的乙烯生理学[M]. 热带作物研究, 1991(4):75-85. [51]Tungngoen K, Kongsawadworakul P, Viboonjun U, et al. Involvement of HbPIP1 and HbTIP2 aquaporins in ethylene stimulation of latex yield, through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis[J]. Plant Physiol, 2009, 151(2):843-856. [52]庄海燕. 巴西橡胶树水通道蛋白基因cDNA的克隆及其在乙烯利刺激下表达的初步分析[D]. 杨凌:西北农林科技大学, 2010. [53]Hao BZ, Wu JL. Effects of wound(tapping)on laticifer differentiation in Hevea brasiliensis[J]. Acta Botanica Sinica, 1982, 24:388-391. [54]Hao BZ, Wu JL. Laticifer differentiation in Hevea brasiliensis:induction by exogenous jasmonic acid and linolenic acid[J]. Ann Bot, 2000, 85(1):37-43. [55]Wu JL, Hao BZ, Tan HY. Wound-induced laticifer differentiation in Hevea brasiliensis shoots mediated by jasmonic acid[J]. J Rubber Res, 2002, 5:53-63. [56]Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, et al. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter(HbSUT1B)in rubber tree(Hevea brasiliensis)[J]. Tree Physiol, 2010, 30(12):1586-1598. [57]Zhu J, Zhang Z. Ethylene stimulation of latex production in Hevea brasiliensis[J]. Plant Sig Beh, 2009, 4(11):1072-1074. [58]Tungngoen K, Viboonjun U, Kongsawadworakul P, et al. Hormonal treatment of the bark of rubber trees(Hevea brasiliensis)increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes[J]. J Plant Physiol, 2011, 168(3):253-262. [59]Shinshi H. Ethylene-regulated transcription and crosstalk with jasmonic acid[J]. Plant Sci, 2008, 175:18-23. [60]Zarei A, Korbes AP, Younessi P, et al. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1. 2 promoter in Arabidopsis[J]. Plant Mol Biol, 2011, 75(4-5):321-331. [61]Gebelin V, Leclercq J, Kuswanhadi Argout X, et al. The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness[J]. Tree Physiol, 2013, 31(76):1084-1098. [62]Duan C, Argout X, Gébelin V, et al. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics, 2013, 14(30):1-22. [63]Porawee P, Manassawe L, Unchera V, et al. Involvement of ethylene-responsive microRNAs and their targets in increased latex yield in the rubber tree in response to ethylene treatment[J]. Plant Physiology and Biochemistry, 2014, 84(10):203-212. [64]Berleth T, Mattsson J, Hardtke CS. Vascular continuity and auxin signals[J]. Trends Plant Sci, 2000, 5(9):387-393. [65]Prigge MJ, Otsuga D, Alonso JM, et al. Class III homeodomain-leucine zipper gene family members have overlapping, antag-onistic, and distinct roles in Arabidopsis development[J]. Plant Cell, 2005, 17(1):61-76. [66]Priya P, Venkatachalam P, Thulaseedharan A. Differential expression pattern of rubber elongation factor(REF)mRNA transcripts from high and low yielding clones of rubber tree(Hevea brasiliensis Muell. Arg. )[J]. Plant Cell Rep, 2007, 26(10):1833-1838. [67]段翠芳, 曾日中, 黎瑜. 激素对巴西橡胶树橡胶生物合成的调控[J]. 热带农业科学, 2004, 24(5):61-68. [68]罗明武, 邓柳红. 巴西橡胶树产胶与排胶机制研究进展[J]. 林业科学, 2006, 42(9):127-130. [69]郑杰. 乙烯利在橡胶树上应用的研究进展[J]. 安徽农业科学, 2007, 35(19):5686-5688. [70]朱家红, 张全琪, 张治礼. 乙烯利刺激橡胶树增产及其分子生物学基础[J]. 植物生理学通讯, 2010, 46(1):87-93. [71]何哲, 王真辉, 林位夫. 巴西橡胶树不同死皮症状的解剖结构特征[J]. 吉林农业(C版), 2010, 243(5):40-41. [72]袁坤, 王真辉, 喻修道. 橡胶树死皮病的分子生物学研究进展[J]. 热带农业科学, 2011, 31(2):66-68. [73]校现周. 乙烯代谢对橡胶树的伤害及其发生机制探讨[J]. 热带农业科学, 2000, 20(4):7-11. [74]吴继林, 谭海燕, 郝秉中. 乙烯利过度刺激采胶诱导巴西橡胶树割面干涸病的研究[J]. 热带作物学报, 2008, 29(1):1-9. [75]蔡磊, 校现周, 蔡世英. 乙烯利与橡胶树排胶及死皮关系[J]. 云南热作科技, 1999, 22(4):18-21. [76]曹建华, 蒋菊生, 杨怀, 等. 不同割制对橡胶树胶乳矿质养分流失的影响[J]. 生态学报, 2008, 28(6):2563-2570. [77]张红梅. 对乙烯利伤害不同敏感性的橡胶籽苗选择研究[D]. 儋州:华南热带农业大学, 2003. [78]校现周, 许闻献, 罗世巧. 橡胶树微割技术若干问题的研究[J]. 热带农业科学, 1998, 2(5):1-6. [79]校现周, 蔡磊. 乙烯利刺激对橡胶树乳管细胞活性氧代谢的影响[J]. 热带作物学报, 2003, 24(1):1-7. [80]邹智, 杨礼富, 王真辉, 等. 橡胶树“死皮”及其防控策略探讨[J]. 生物技术通报, 2012(9):8-15. [81]杨文凤, 校现周. 橡胶树气刺割胶技术研究现状与亟待解决的问题[J]. 中国热带农业, 2013, 53(4):18-21. |
[1] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[2] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[3] | ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui. Research Progress on Mechanism of Poultry Follicular Atresia [J]. Biotechnology Bulletin, 2020, 36(4): 185-191. |
[4] | WEI Ming-ming, ZENG Xia, AN Ze-wei, HU Yan-shi, HUANG Xiao, LI Wei-guo. Advances in the Maintenance and Termination of Floral Meristem Regulated by C-type Floral Organ Gene AGAMOUS(AG) [J]. Biotechnology Bulletin, 2020, 36(1): 135-143. |
[5] | LI Xiao-yuan, XIE Li-nan. Research Progress in Na+ Regulation Mechanism of Plants Under Salt Stress [J]. Biotechnology Bulletin, 2019, 35(7): 148-155. |
[6] | KUANG Yong-jie, LIU Lang, YAN Fang, REN Bin, YAN Da-qi, ZHANG Da-wei, LIN Hong-hui, ZHOU Huan-bin. Functions of Phytohormones During the Interactions Between Rice, Pathogens [J]. Biotechnology Bulletin, 2018, 34(2): 74-86. |
[7] | LIU Xiao-wei, YANG Xiu-yan, LIU Zheng-xiang, WU Hai-wen, ZHANG Hua-xin, ZHU Jian-feng. Role of MicroRNA in Plant Resistance to Salt Stress [J]. Biotechnology Bulletin, 2017, 33(12): 12-21. |
[8] | YANG Xian-you, HUANG You-jun, ZHANG Tong, HUANG Chun-ying. Advances on Transcriptional Activator AtWRI1 of Arabidopsis [J]. Biotechnology Bulletin, 2016, 32(6): 13-18. |
[9] | Jia Hongfang, Zhang Hongying, Liu Weizhi, Cui Hong, Liu Guoshun. Function and Regulation Mechanisms of Nitrate Transporters in Higher Plants [J]. Biotechnology Bulletin, 2014, 0(6): 14-21. |
[10] | Li Qiang, Wu Jianming, Liang He, Huang Xing, Qiu Lihang. Gibberellins Biosynthesis and Signaling Transduction Pathway in Higher Plant [J]. Biotechnology Bulletin, 2014, 0(10): 16-22. |
[11] | Lu Ting . Structure and Regulation Mechanism of Bacillus stearothermophilus dnaB-dnaG Complex [J]. Biotechnology Bulletin, 2013, 0(6): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||