Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (2): 74-86.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1104
Previous Articles Next Articles
KUANG Yong-jie1, LIU Lang1, YAN Fang1, REN Bin1,2, YAN Da-qi1, ZHANG Da-wei2, LIN Hong-hui2, ZHOU Huan-bin1
Received:
2017-12-22
Online:
2018-02-26
Published:
2018-03-12
KUANG Yong-jie, LIU Lang, YAN Fang, REN Bin, YAN Da-qi, ZHANG Da-wei, LIN Hong-hui, ZHOU Huan-bin. Functions of Phytohormones During the Interactions Between Rice, Pathogens[J]. Biotechnology Bulletin, 2018, 34(2): 74-86.
[1] 余四斌, 熊银, 肖景华, 等. 杂交稻与绿色超级稻[J]. 科学通报, 2016, 61(35):3797-3803. [2] Skamnioti P, Gurr S.Against the grain:safeguarding rice from blast disease[J]. Trends in Biotechnology, 2009, 27(3):141-150. [3] Grant M, Kazan K, Manners J.Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance:challenges and opportunities[J]. Microbial Biotechnology, 2013, 6(3):212-222. [4] Berens M, Berry H, Mine A, et al.Evolution of hormone signaling networks in plant defense[J]. Annu Rev Phytopathol, 2017, 55(1):401-425. [5] 丁丽娜, 杨国兴. 植物抗病机制及信号转导的研究进展[J]. 生物技术通报, 2016, 32(10):109-117. [6] White RF.Acetylsalicylic acid(aspirin)induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979, 99(2):410-412. [7] Antoniw JF, Dunkley AM, White RF, et al.Soluble leaf proteins of virus-infected tobacco(Nicotiana tabacum)cultivars[J]. Biochemical Society Transactions, 1980, 8(1):70-71. [8] Shah J.The salicylic acid loop in plant defense[J]. Current Opinion in Plant Biology, 2003, 6(4):365-371. [9] Vlot AC, Dempsey DA, Klessig DF.Salicylic acid, a multifaceted hormone to combat disease[J]. Annu Rev Phytopathol, 2009, 47:177-206. [10] Grant M, Lamb C.Systemic immunity[J]. Current Opinion in Plant Biology. 2006, 9(4):414-420. [11] Silverman P, Seskar M, Kanter D, et al.Salicylic acid in rice:biosynthesis, conjugation, and possible role[J]. Plant Physiology, 1995, 108(2):633-639. [12] Raskin I, Skubatz H, Tang W, et al.Salicylic acid levels in thermogenic and non-thermogenic plants[J]. Ann Bot, 1990, 66(4):369-373. [13] Malamy J, Carr JP, Klessig DF, et al.Salicylic acid:a likely endogenous signal in the resistance response for tobacco mosaic viral infection[J]. Science, 1990, 250(4983):1002-1004. [14] Chen Z, Iyer S, Caplan A, et al.Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissue[J]. Plant Physiology, 1997, 114(1):193-201. [15] Yang Y, Qi M, Mei C.Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress[J]. The Plant Journal, 2004, 40(6):909-919. [16] Wildermuth M, Dewdney J, Wu G, et al.Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414(6863):562-565. [17] Lee H, Leon J, Raskin I.Biosynthesis and metabolism of salicylic acid[J]. Proceedings of the National Academy of Sciences, 1995, 92(10):4076-4079. [18] Zhang X, Chen S, Mou Z.Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis[J]. Journal of Plant Physiology, 2010, 167(2):144-148. [19] Durrant W, Dong X.Systemic acquired resistance[J]. Annu Rev Phytopathol, 2004, 42:185-209. [20] Kyndt T, Nahar K, Haegeman A, et al.Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice[J]. Plant Biology, 2012, 14(s1):73-82. [21] Cao H, Glazebrook J, Clarke J, et al.The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell, 1997, 88(1):57-63. [22] Fitzgerald H, Chern M, Navarre R, et al.Overexpression of(At)NPR1 in rice leads to a BTH- and environment-induced lesion-Mimic/Cell death phenotype[J]. Molecular Plant-Microbe Interactions, 2004, 17(2):140-151. [23] Chern M, Fitzgerald H, Canlas P, et al.Overexpression of a rice NPR1 Homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18(6):511-520. [24] Yuan Y, Zhong S, Li Q, et al.Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal, 2007, 5(2):313-324. [25] Chern M, Canlas P, Fitzgerald H, et al.Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1[J]. The Plant Journal, 2005, 43(5):623-635. [26] Chern M, Fitzgerald H, Yadav R, et al.Evidence for a disease resistance pathway in rice similar to the NPR1 mediated signaling pathway in Arabidopsis[J]. The Plant Journal, 2001, 27(2):101-113. [27] Weigel R, Bäuscher C, Pfitzner AP, et al.NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants[J]. Plant Mol Biol, 2001, 46(2):143-160. [28] Despres C, Chubak C, Rochon A, et al.The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1[J]. Plant Cell, 2003, 15(9):2181-2191. [29] Lindermayr C, Sell S, Müller B, et al.Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide[J]. Plant Cell, 2010, 22(8):2894-2907. [30] Lu HT, Greenberg J, Holuigue L.Editorial:salicylic acid signaling[J]. Frontiers in Plant Science, 2016, doi:10. 3389/fpls. 2016. 00238 [31] Kuai X, MacLeod B, Després C. Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors;a differentiating argument[J]. Frontiers in Plant Science. 2015, doi:10. 3389/fpls. 2015. 00235. [32] Fu Z, Yan S, Saleh A, et al.NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants[J]. Nature, 2012, 486(7402):228-232. [33] Wu Y, Zhang D, Chu J, et al.The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1(6):639-647. [34] Yan S, Dong X.Perception of the plant immune signal salicylic acid[J]. Current Opinion in Plant Biology, 2014, 20:64-68. [35] Spoel S, Mou Z, Tada Y, et al.Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity[J]. Cell, 2009, 137(5):860-872. [36] Withers J, Dong X.Posttranslational modifications of NPR1:a Single protein playing multiple roles in plant immunity and physiology[J]. PLoS Pathogens, 2016, 12(8):e1005707. [37] Wang D, Amornsiripanitch N, Dong X.A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants[J]. PLoS Pathogens, 2006, 2(11):e123. [38] Shimono M, Koga H, Akagi A, et al.Rice WRKY45 plays important roles in fungal and bacterial disease resistance[J]. Mol Plant Pathol, 2012, 13(1):83-94. [39] Shimono M, Sugano S, Nakayama A, et al.Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19(6):2064-2076. [40] Inoue H, Hayashi N, Matsushita A, et al.Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction[J]. Proceedings of the National Academy of Sciences, 2013, 110(23):9577-9582. [41] Shingo G, Fuyuko S, Mai S, et al.Development of disease-resistant rice by optimized expression of WRKY45[J]. Plant Biotechnology Journal, 2015, 13(6):753-765. [42] Zhang H, Tao Z, Hong H, et al.Transposon-derived small RNA is responsible for modified function of WRKY45 locus[J]. Nature Plants, 2016, 2:16016. [43] Tao Z, Liu H, Qiu D, et al.A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 2009, 151(2):936-948. [44] Tao Z, Kou Y, Liu H, et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14):4863-4874. [45] Ueno Y, Yoshida R, Kaboshi M, et al.MAP kinases phosphorylate rice WRKY45[J]. Plant Signaling & Behavior, 2013, 8(6):e24510. [46] Ueno Y, Yoshida R, Kaboshi M, et al.Abiotic stresses sntagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6[J]. PLoS Pathogens, 2015, 11(10):e1005231. [47] Ueno Y, Matsushita A, Inoue H, et al.WRKY45 phosphorylation at threonine 266 acts negatively on WRKY45-dependent blast resistance in rice[J]. Plant Signaling & Behavior, 2017, 12(8):e1356968. [48] Matsushita A, Inoue H, Goto S, et al.Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program[J]. The Plant Journal, 2013, 73(2):302-313. [49] Hwang S, Kwon S, Jang J, et al.OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae[J]. Plant Cell Reports, 2016, 35(9):1975-1985. [50] 徐文静, 缪刘杨, 李莉云, 等. 五个WRKY转录因子在水稻叶片生长和Xa21介导的白叶枯病抗性反应中的表达研究[J]. 生物化学与生物物理进展, 2013, 40(4):356-364. [51] 缪刘杨, 周亮, 杨烁, 等. 水稻转录因子WRKY42的转录、表达及其与W-box的结合特征分析[J]. 生物化学与生物物理进展, 2014, 41(7):682-692. [52] Qiu D, Xiao J, Ding X, et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20:492-499. [53] Fukushima S, Mori M, Sugano S, et al.Transcription factor WRKY62 plays a role in pathogen defense and hypoxia-responsive gene expression in rice[J]. Plant&Cell Physiology, 2016, 57(12):2541-2551. [54] Zhong X, Yang J, Shi Y, et al.The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus Magnaporthe oryzae[J]. Mol Plant Pathol, 2017, doi:10. 1111/mpp. 12546. [55] Glazebrook J.Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annu Rev Phytopathol, 2005, 43(1):205-227. [56] Bari R, Jones J D G. Role of plant hormones in plant defence responses[J]. Plant Mol Biol, 2009, 69(4):473-488. [57] Jiang Y, Yu D.The WRKY57 Transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology, 2016, 171(4):2771-2782. [58] Vos IA, Moritz L, Pieterse CMJ, et al.Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions[J]. Frontiers in Plant Science, 2015, 6(639):639. [59] Birkenbihl RP, Somssich IE.Transcriptional plant responses critical for resistance towards necrotrophic pathogens[J]. Frontiers in Plant Science, 2011, 2(12):76. [60] Geng X, Cheng J, Gangadharan A, et al.The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense[J]. Plant Cell, 2012, 24(11):4763-4774. [61] Kombrink E.Chemical and genetic exploration of jasmonate biosynthesis and signaling paths[J]. Planta, 2012, 236(5):1351-1366. [62] Hause B, Mielke K, Forner S.Cell-specific detection of jasmonates by means of an immunocytological approach[M]. Jasmonate Signaling. Humana Press, 2013:135-144. [63] Sheard LB, Tan X, Mao H, et al.Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322):400-405. [64] Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling[J]. Nature, 2007, 448(7154):661-665. [65] Seo HS, Song JT, Cheong JJ, et al.Jasmonic acid carboxyl methyltransferase:a key enzyme for Jasmonate-Regulated plant responses[J]. Proc Natl Acad Sci USA, 2001, 98(8):4788-4793. [66] Riemann M, Haga K, Shimizu T, et al.Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae[J]. Plant Journal for Cell & Molecular Biology, 2013, 74(2):226-238. [67] Yokotani N, Sato Y, Tanabe S, et al.WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16):5085-5097. [68] Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D, et al.Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice[J]. Plant Cell & Environment, 2014, 37(2):451-461. [69] Duan Z, Lv G, Shen C, et al.The role of jasmonic acid signalling in wheat(Triticum aestivum L.)powdery mildew resistance reaction[J]. European Journal of Plant Pathology, 2014, 140(1):169-183. [70] Ross A, Yamada K, Hiruma K, et al.The Arabidopsis PEPR pathway couples local and systemic plant immunity[J]. The EMBO Journal, 2014, 33(1):62-75. [71] Taheri P, Tarighi S.Riboflavin induces resistance in rice against Rhizoctonia solani, via jasmonate-mediated priming of phenylpropanoid pathway[J]. Journal of Plant Physiology, 2010, 167(3):201-208. [72] He Y, Zhang H, Sun Z, et al.Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice[J]. New Phytologist, 2017, 214(1):388-399. [73] Riemann M, Haga K, Shimizu T, et al.Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae[J]. Plant Journal for Cell & Molecular Biology, 2013, 74(2):226-238. [74] Peng X, Hu Y, Tang X, et al.Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5):1485-1498. [75] Howe GA, Jander G.Plant Immunity to Insect Herbivores[J]. Annual Review of Plant Biology, 2008, 59(1):41-66. [76] Browse J.Jasmonate passes muster:a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60(1):183-205. [77] Lee HY, Seo JS, Cho JH, et al.Oryza sativa COI homologues restore jasmonate signal transduction in Arabidopsis coi1-1 mutants[J]. PLoS One, 2013, 8(1):e52802. [78] Yamada S, Kano A, Tamaoki D, et al.Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice[J]. Plant & Cell Physiology, 2012, 53(12):2060. [79] Uji Y, Taniguchi S, Tamaoki D, et al.Overexpression of OsMYC2 results in the Up-Regulation of early JA-Rresponsive genes and bacterial blight resistance in rice[J]. Plant & Cell Physiology, 2016, 57(9):1814-1827. [80] Ogawa S, Kawaharamiki R, Miyamoto K, et al.OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice[J]. Biochemical & Biophysical Research Communications, 2017, 486(3):796-803. [81] Derksen H, Rampitsch C, Daayf F.Signaling cross-talk in plant disease resistance[J]. Plant science. 2013, 207:79-87. [82] Iwai T, Miyasaka A, Seo S, et al.Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology, 2006, 142(3):1202-1215. [83] Yang C, Li W, Cao J, et al.Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice[J]. The Plant Journal, 2017, 89(2):338-353. [84] Bailey T, Zhou X, Chen J, et al.Role of Ethylene, Abscisic Acid and MAP Kinase Pathways in Rice Blast Resistance[M]// Wang GL, Valent B(eds). Advances in Genetics, Genomics and Control of Rice Blast Disease, Dordrecht:Springer, 2009:185-190. [85] Nahar K, Kyndt T, Vleesschauwer DD, et al.The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiology, 2011, 157(1):305-316. [86] Helliwell E, Wang Q, Yang Y.Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2013, 11(1):33-42. [87] Liu H, Dong S, Gu F, et al.NBS-LRR protein Pik-H4 interacts with OsBIHD1 to balance rice blast resistance and growth by coordinating Ethylene-Brassinosteroid pathway[J]. Frontiers in Plant Science, 2017, 8:127. [88] De Vleesschauwer D, Yang Y, Cruz C V, et al.Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiology, 2010, 152(4):2036-2052. [89] Van Bockhaven, Spíchal L, Novák O, et al.Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway[J]. New Phytologist, 2015, 206(2):761-773. [90] Shen X, Liu H, Yuan B, et al.OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant Cell Environ, 2011, 34(2):179-191. [91] Robert-Seilaniantz A, Grant M, Jones JDG.Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism[J]. Annu Rev Phytopathol, 2011, 49:317-343. [92] Broekaert WF, Delauré SL, De Bolle MFC, et al.The role of ethylene in host-pathogen interactions[J]. Annu Rev Phytopathol, 2006, 44:393-416. [93] Van Loon LC, Geraats BPJ, Linthorst HJM.Ethylene as a modulator of disease resistance in plants[J]. Trends in Plant Science, 2006, 11(4):184-191. [94] Wei Z, Li J.Brassinosteroids regulate root growth, development, and symbiosis[J]. Molecular Plant, 2016, 9(1):86-100. [95] Chinchilla D, Zipfel C, Robatzek S, et al.A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500. [96] Heese A, Hann DR, Gimenez-Ibanez S, et al.The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(29):12217-12222. [97] Nakashita H, Yasuda M, Nitta T, et al.Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal, 2003, 33(5):887-898. [98] Chen X, Zuo S, Schwessinger B, et al.An XA21-associated kinase(OsSERK2)regulates immunity mediated by the XA21 and XA3 immune receptors[J]. Molecular Plant, 2014, 7(5):874-892. [99] Zuo S, Zhou X, Chen M, et al.OsSERK1 regulates rice development but not immunity to Xanthomonas oryzae pv. oryzae or Magnaporthe oryzae[J]. Journal of Integrative Plant Biology, 2014, 56(12):1179-1192. [100] Liao H, Xiao X, Li X, et al.OsBAK1 is involved in rice resistance to Xanthomonas oryzae pv. oryzae PXO99[J]. Plant Biotechnology Reports, 2016, 10(2):75-82. [101] Wang J, Shi H, Zhou L, et al.OsBSK1-2, an orthologous of AtBSK1, is involved in rice immunity[J]. Frontiers in Plant Science, 2017, 8:908. [102] De Vleesschauwer D, Van BuytenE, Satoh K, et al. Brassinosteroids antagonize gibberellin-and salicylate-mediated root immunity in rice[J]. Plant Physiology, 2012, 158(4):1833-1846. [103] Nahar K, Kyndt T, Hause B, et al.Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Molecular Plant-Microbe Interactions, 2013, 26(1):106-115. [104] Albrecht C, Boutrot F, Segonzac C, et al.Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1[J]. Proceedings of the National Academy of Sciences, 2012, 109(1):303-308. [105] Belkhadir Y, Jaillais Y, Epple P, et al.Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns[J]. Proceedings of the National Academy of Sciences, 2012, 109(1):297-302. [106] Jiménez-Góngora T, Kim SK, Lozano-Durán R, et al.Flg22-triggered immunity negatively regulates key BR biosynthetic genes[J]. Frontiers in Plant Science, 2015, 6:981. [107] Lozano-Durán R, Macho AP, Boutrot F, et al.The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth[J]. Elife, 2013, 2:e00983. [108] Kang S, Yang F, Li L, et al.The Arabidopsis transcription factor BES1 is a direct substrate of MPK6 and regulates immunity[J]. Plant Physiology, 2015, 167:107 6-1086. [109] Vidhyasekaran P.Plant hormone signaling systems in plant innate immunity[M]. Dordrecht:Springer, 2015:383-402. [110] Hossain M, Nahar K, Gheysen G.The role of Gibberellin in the response of rice to Hirschmanniella oryzae infection[J]. Arabian Journal for Science and Engineering, 2017, doi:10. 1007/s13369-017-2603-2. [111] Tanaka N, Matsuoka M, Kitano H, et al.gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein(PBZ1)in response to cold stress and pathogen attack[J]. Plant Cell Environ, 2006, 29(4):619-631. [112] Yang D, Li Q, Deng Y, et al.Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance[J]. Molecular Plant, 2008, 1(3):528-537. [113] Qin X, Liu J, Zhao W, et al.Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice[J]. Molecular Plant-Microbe Interactions, 2013, 26(2):227-239. [114] De VleesschauwerD, Seifi HS, Filipe O, et al. The DELLA protein SLR1 integrates and amplifies salicylic acid-and jasmonic acid-dependent innate immunity in rice[J]. Plant Physiology, 2016, 170(3):1831-1847. [115] Jiang C, Shimono M, Sugano S, et al.Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction[J]. Molecular Plant-Microbe Interactions, 2010, 23(6):791-798. [116] Cao J, Yang C, Li L, et al.Rice Plasma membrane proteomics reveals Magnaporthe oryzae promotes susceptibility by sequential activation of host hormone signaling pathways[J]. Molecular Plant-Microbe Interactions, 2016, 29(11):902-913. [117] Xu J, Audenaert K, Hofte M, et al.Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses[J]. PloS One, 2013, 8(6):e67413. [118] De Vleesschauwer D, Yang Y, Cruz CV, et al.Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiology, 2010, 152(4):2036-2052. [119] Ding X, Cao Y, Huang L, et al.Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice[J]. Plant Cell, 2008, 20(1):228-240. [120] Domingo C, Andrés F, Tharreau D, et al.Constitutive expression of OsGH3. 1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice[J]. Molecular Plant-Microbe Interactions, 2009, 22(2):201-210. [121] Fu J, Liu H, Li Y, et al.Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice[J]. Plant Physiology, 2011, 155(1):589-602. [122] Li W, Wang F, Wang J, et al.Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice[J]. PLoS One, 2015, 10(3):e0119867. [123] Choi J, Choi D, Lee S, et al.Cytokinins and plant immunity:old foes or new friends?[J]. Trends in Plant Science, 2011, 16(7):388-394. [124] Jiang C, Shimono M, Sugano S, et al.Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice[J]. Molecular Plant-Microbe Interactions, 2013, 26(3):287-296. [125] Argueso CT, Ferreira FJ, Epple P, et al.Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity[J]. PLoS Genetics, 2012, 8(1):e1002448. [126] Choi J, Huh SU, Kojima M, et al.The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis[J]. Developmental Cell, 2010, 19(2):284-295. [127] Großkinsky DK, Naseem M, Abdelmohsen UR, et al.Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling[J]. Plant Physiology, 2011, 157(2):815-830. [128] Sano H, Seo S, Orudgev E, et al.Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection[J]. Proceedings of the National Academy of Sciences, 1994, 91(22):10556-10560. [129] Swartzberg D, Kirshner B, Rav-David D, et al.Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene[J]. European Journal of Plant Pathology, 2008, 120(3):289-297. [130] Arnaud D, Lee S, Takebayashi Y, et al. Regulation of reactive oxygen species homeostasis by cytokinins modulates stomatal immunity in Arabidopsis[J]. Plant Cell, 2017, 29(3):tpc. 00583. 2016. [131] Bari R, Jones JDG.Role of plant hormones in plant defence responses[J]. Plant Mol Biol, 2009, 69(4):473-488. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[6] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[7] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[8] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[9] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[10] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[11] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[12] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[13] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[14] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[15] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||