Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (8): 22-27.doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.004
• Orignal Article • Previous Articles Next Articles
GUO Yuan
Revised:
2015-10-15
Online:
2016-08-25
Published:
2016-08-25
GUO Yuan. Current Progress on Ribosome Display[J]. Biotechnology Bulletin, 2016, 32(8): 22-27.
[1] Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705):1315-1317. [2] Santich BH, Liu H, Liu C, et al. Generation of TCR-like antibodies using phage display[J]. Methods Mol Biol, 2015, 1348:191-204. [3] Shusta, EV, VanAntwerp, J, Wittrup KD. Biosynthetic polypeptide libraries[J]. Curr Opin Biotechnol, 1999, 10(2):117-122. [4] Van Deventer JA, Yuet KP, Yoo TH, et al. Cell surface display yields evolvable, clickable antibody fragments[J]. Chembiochem, 2014, 15(12):1777-1781. [5] Soga K, Abo H, Qin SY, et al. Mammalian cell surface display as a novel method for developing engineered lectins with novel characteristics[J]. Biomolecules, 2015, 5(3):1540-1562. [6] Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display[J]. Proc Natl Acad Sci, USA, 1997, 94(10):4937-4942. [7] He M, Taussig MJ. ARM complexes as efficient selection particles for in vitro display and evolution of antibody combining sites[J]. Nucleic Acids Res, 1997, 25:5132-5134. [8] Chen L, Kutskova YA, Hong F, et al. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display[J]. Protein Eng Des Sel, 2015, 28(10):427-435. [9] Tokunaga M, Shiheido H, Hayakawa I, et al. Hereditary spastic paraplegia protein spartin is an FK506-binding protein identified by mRNA display[J]. Chem Biol, 2013, 20(7):935-942. [10] Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries[J]. Proc Natl Acad Sci USA, 1994, 91(19):9022-9026. [11] Taussig MJ, Groves MAT, Menges M, et al. ARM complexes for in vitro display and evolution of antibody combining sites[M]//Monoclonal Antibodies:A Practical Approach. In Shepherd P, Dean C Eds. Oxford:Oxford University Press, 2000:91-109. [12] Irving RA, Coia G, Roberts A, et al. Ribosome display and affinity maturation:from antibodies to single V-domains and steps towards cancer therapeutics[J]. J Immunol Methods, 2001, 248:31-45. [13] He M, Taussig MJ. Ribosome display:Cell-free protein display technology[J]. Brief Funct Genomic Proteomic, 2002, 1(2):204-212. [14] Ellman J, Mendel D, Anthony-Cahill S, et al. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins[J]. Methods Enzymol, 1991, 202:301-336. [15] Kanamori T, Fujino Y, Ueda T. PURE ribosome display and its application in antibody technology[J]. Biochimica et Biophysica Acta, 2014, 1844:1925-1932. [16] Griffiths AD, Tawfik DS. Man-made enzymes—from design to in vitro compartmentalization[J]. Cur Opin Biotech, 2000, 11(4):338-353. [17] Levy M, Ellington AD. Directed evolution of streptavidin variants using in vitro compartmentalization[J]. Chemi Biol, 2008, 15(9):979-989. [18] Tay Y, Ho C, Droge P, et al. Selection of bacteriophage lambda integrases with altered recombination specificity by in vitro compartmentalization[J]. Nucleic Acids Res, 2010, 38(4):e25. [19] Ogawa A, Hayami M, Sando S, et al. A concept for selection of codon-suppressor tRNAs based on read-through ribosome display in an in vitro compartmentalized cell-free translation system[J]. J Nucleic Acids, 2012, 2012:538129. [20] Chin SE, Ferraro F, Groves M, et al. Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses[J]. J Immunol Methods, 2015, 416:49-58. [21] Zhao L, Ning BA, Bai JL, et al. Selection of bisphenol A-single-chain antibodies from a non-immunized mouse library by ribosome display[J]. Analytical Biochemistry, 2015, 488:59-64. [22] Luo YH, Xia YX. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display[J]. Anal Biochem, 2012, 421:130-137. [23] Chen F, Zhao Y, Liu M, et al. Functional selection of hepatitis C virus envelope E2-binding peptide ligands by using ribosome display[J]. Antimicrob Agents Chemother, 2010, 54(8):3355-3364. [24] Zhao XL, Chen WQ, Yang ZH, et al. Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display[J]. J Biotech, 2009, 144:253-258. [25] Zhou L, Mao WP, Fen JA, et al. Selection of scFvs specific for the HepG2 cell line using ribosome display[J]. J Biosci, 2009, 34 (2):221-226. [26] Sun YN, Ning BA, Liu M, et al. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library[J]. PLoS One, 2012, 7(3):e33186. [27] Qi YH, Wu CM, Zhang SX, et al. Selection of anti-sulfadimidine specific ScFvs from a hybridoma cell by eukaryotic ribosome display[J]. PLoS One, 2009, 4(7):e6427. [28] Cheng HW, Chen YF, Yang Y, et al. Characterization of anti-citrinin specific ScFvs selected from non-immunized mouse splenocytes by eukaryotic ribosome display[J]. PLoS One, 2015, 10(7):e0131482. [29] Skirgaila R, Pudzaitis V, Paliksa S, et al. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display:a novel tool for the directed evolution of enzymes[J]. Protein Eng Des Sel, 2013, 26(7):453-461. [30] Whaley SR, English DS, Hu EL, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly[J]. Nature, 2000, 405:665-668. [31] Ejima H, Matsumiya K, Sawada T, et al. Conjugated polymer nanoparticles hybridized with the peptide aptamer[J]. Chem Commun, 2011, 47:7707-7709. [32] Li Z, Uzawa T, Zhao H, et al. In vitro selection of peptide aptamers using a ribosome display for a conducting polymer[J]. J Biosci Bioeng, 2014, 117(4):501-503. [33] Li Z, Uzawa T, Tanaka T, et al. In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome dis-play[J]. Biotechnol Lett, 2013, 35:39-45. |
[1] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[2] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[3] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
[4] | SUO Qing-qing, WU Nan, YANG Hui, LI Li, WANG Xi-feng. Prokaryotic Expression,Antibody Preparation and Application of Rice Caffeoyl Coenzyme A-O-methyltransferase Gene [J]. Biotechnology Bulletin, 2022, 38(8): 135-141. |
[5] | QIN Xue-jing, WANG Yu-han, CAO Yi-bo, ZHANG Ling-yun. Prokaryotic Expression and Preparation of Polyclonal Antibody of PwHAP5 Gene in Picea wilsonii [J]. Biotechnology Bulletin, 2022, 38(8): 142-149. |
[6] | WANG Guang-li, FAN Chan, WANG Hui, LU Hui-fang, XIA Ling-yin, HUANG Jian, MIN Xun. Prokaryotic Expression,Purification,Identification,and Polyclonal Antibody Preparation of Vibrio cholerae Hemolysin HlyA [J]. Biotechnology Bulletin, 2022, 38(7): 269-277. |
[7] | XU Chong-xin, ZHANG Xiao, LIU Yuan, ZHONG Jian-feng, XIE Ya-jing, LU Li-na, GAO Mei-jing, LIU Xian-jin. Screening and Identification of Humanized Genetically Engineered Antibody Targeting to Simulate the Anti-insect Function of Bt Cry1C Protein [J]. Biotechnology Bulletin, 2022, 38(5): 191-200. |
[8] | WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies [J]. Biotechnology Bulletin, 2022, 38(5): 248-256. |
[9] | SUN Ping-yong, ZHANG Wu-han, SHU Fu, HE Qiang, ZHANG Li, PENG Zhi-rong, DENG Hua-feng. Analysis of Mutation Sites of OsBADH2 Gene in Fragrant Rice and Development of Related Functional Marker [J]. Biotechnology Bulletin, 2021, 37(4): 1-7. |
[10] | LI Jia-jun, ZHENG Xiao, SHENG Jie, XU Yao. Novel Coronavirus and Research Progress of Related Clinical Detection Methods [J]. Biotechnology Bulletin, 2021, 37(4): 282-292. |
[11] | PENG Li-zhong, ZHANG Peng, ZHOU Wen-wen, ZENG Xu-hui, ZHANG Xiao-ning. Preparation and Multi-purpose Validation of Sperm-specific Protein Cabs1 Polyclonal Antibody [J]. Biotechnology Bulletin, 2021, 37(3): 261-270. |
[12] | LI Xue, LI Jun-min, ZHANG Lei, LI Shan. Expression and Purification of Cell-penetrating Peptide M918 Conjugate Antibody and Study on Its Uptake Efficiency [J]. Biotechnology Bulletin, 2021, 37(12): 198-204. |
[13] | WANG Huan-yu, CHANG Hao-wan, ZHANG Chong-qi, JIN Wei-lin, WEI Fang. Comparison of 5 Methods of Evaluating the Expressions of Chimeric Antigen Receptors [J]. Biotechnology Bulletin, 2021, 37(12): 265-273. |
[14] | FU Qiang, GUO Yan-ting, CHEN Jun-zhen, WANG Jin-quan, SHI Hui-jun. Preparation and Identification of Polyclonal Antibody Against Ion Channel Protein p7 Polypeptide of Bovine Viral Diarrhea Virus [J]. Biotechnology Bulletin, 2021, 37(10): 137-142. |
[15] | TANG Lu, DONG Li-ping, YIN Mo-li, LIU Lei, DONG Yuan, WANG Hui-yan. Preparation and Identification of a Novel FGF20 Monoclonal Antibody [J]. Biotechnology Bulletin, 2021, 37(10): 179-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||