[1] 喻连香, 周丹, 石丽娟, 等. 国内某低品位难选铜矿的生物浸出研究[J]. 现代生物医学进展, 2014, 14(10):1861-1864. [2] Wang J, Zhu S, Zhang YS, et al. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Journal of Central South University, 2014, 21(2):728-734. [3] Davis-Belmar CS, Cautivo D, Demergasso C, et al. Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture[J]. Hydrometallurgy, 2014, 21(150):308-312. [4] Shabani MA, Irannajad M, Azadmehr AR, et al. Bioleaching of copper oxide ore by Pseudomonas aeruginosa[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(12):1130-1133. [5] Ramanathan T, Ting YP. Selective copper bioleaching by pure and mixed cultures of alkaliphilic bacteria isolated from a fly ash landfill site[J]. Water Air Pollut, 2015, 226(11):373-387. [6] 朱永光, 杨柳, 张火云, 等. 微生物菌剂的研究与开发现状[J]. 四川环境, 2004, 23(3):5-12. [7] Johnson DB. Importance of microbial ecology in the development of new mineral technologies[J]. Hydrometallurgy, 2001, 59(2):147-157. [8] Johnson DB. Biodiversity and ecology of acidophilic microorganisms [J]. FEMS Microbiol Ecol, 1998, 27(4):307-317. [9] 钱林. Acidithiobacilius ferrooxidans和Acidiphilium spp. 细菌的分离鉴定及其协同浸出黄铜矿能力研究[D]. 长沙:中南大学, 2008. [10] Romo E, Weinacker DF, Zepeda AB, et al. Bacterial consortium for copper extraction from sulphide oreconsisting mainly of chalcopyrite [J]. Brazilian Journal of Microbiology, 2013, 44(2):523-528. [11] Jain R, Ashish P, Sreekrishnan TR, Dastidr MG. Autoheated thermophilic aerobic sludge digestion and metal bioleaching in a two-stage reactor system[J]. Journal of Environmental Sciences, 2010, 22(2):230-236. [12] Liu HW, Yin HQ, Dai YX, et al. The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation[J]. Archives of Microbiology, 2011, 193(12):857-866. [13] 余润兰, 石丽娟, 周丹, 等. 生物浸出过程中微生物协同作用机制的研究进展[J]. 中国有色金属学报, 2013, 23(10):3006-3014. [14] 邵碧英, 陈彬, 汤敏英, 等. 沙门氏菌DNA提取及PCR反应条件的优化[J]. 食品科学, 2007, 28(7):331-334. [15] 郝晓东, 曾伟民, 彭堂见, 等. 高通量测序技术分析不同温度下赞比亚低品位铜矿生物浸出过程中的微生物多样性[J]. 中国有色金属学报, 2015, 25(9):2558-2564. [16] Xin BP, Li T, Li X, et al. Reductive dissolution of manganese from manganese dioxide ore by autotrophic mixed culture under aerobic conditions[J]. Journal of Cleaner Production, 2015, 92:54-64. [17] Nkulu G, Gaydardzhiev S, Mwema E, et al. SEM and EDS observations of carrollite bioleaching with a mixed culture of acidophilic bacteria[J]. Minerals Engineering, 2015, 75:70-76. [18] Ahmadi A, Mousavi SJ. The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms[J]. International Journal of Mineral Processing, 2015, 135(10):32-39. [19] Zhao HB, WangJ, Gan XW, et al. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria:an emphasis on their interactions[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8):777-787. [20] Wang J, Zhu S, Zhang YS, et al. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Journal of Central South University, 2014, 21(2):728-734. [21] 聂立, 税刘杨, 王建英. 包头泉山金矿浸矿酸性微生物群落优势度变化的比较研究[J]. 微生物学通报, 2014, 41(1):43-49. [22] Zeng WM, Qiu GZ, Zhou HB, et al. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate[J]. Bioresource Technology, 2010, 101(18):7068-7075. [23] 杨国斌. PCR-测序法分析铀生物堆浸过程中微生物群落结构变化特征[J]. 广东化工, 2014(9):21-23. [24] Yang Y, Diao MX, Liu K, et al. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic Acidophile acidiphilium sp. [J]. Hydrometallurgy, 2013, 131(1):93-98. [25] 王秀美. 自养与异养浸矿细菌的分离鉴定、浸矿及其生长代谢热的基础研究[D]. 长沙:中南大学, 2008. |