[1] Hong KK, Kim JH, Yoon JH, et al. O-Succinyl-L-homoserine-based C4-chemical production:succinic acid, homoserine lactone, gamma-butyrolactone, gamma-butyrolactone derivatives, and 1, 4-butanediol[J] . Journal of Industrial Microbiology & Biotechnology, 2014, 41(10):1517-1524. [2] 曾凡亮, 王宇, 杜升华, 等. 高丝氨酸的合成研究[J] . 精细化工中间体, 2016, 46(2):17-21. [3] Bolten CJ. Towards methionine overproduction in Corynebacterium glutamicum- methanethiol and dimethyldisulfide as reduced sulfur sources[J] . Journal of Microbiology and Biotechnology, 2010, 20(8):1196-1203. [4] CJ-第一制糖株式会社. 使用甲硫醇和二甲硫醚的混合物增加蛋氨酸产率的方法:中国201080009632. 4[P] . 2014-03-12. [5] Ferla MP, Patrick WM. Bacterial methionine biosynthesis[J] . Microbiology, 2014, 160(8):1571-1584. [6] 容庭, 陈庄, 何前, 等. 蛋氨酸在肉、蛋鸡生产中的应用研究进展[J] . 饲料博览, 2008, 20(1):19-22. [7] 李戍江, 杨开伦, 禚梅, 等. 包被蛋氨酸和赖氨酸对奶牛产奶性能的影响[J] . 草食家畜, 2009, 29(1):47-49. [8] Solberg J, Buttery P, Boorman K. Effect of moderate methionine deficiency on food, protein and energy utilization in the chick[J] . British Poultry Science, 1971, 12(3):297-304. [9] Townsend D, Tew K, Tapiero H. Sulfur containing amino acids and human disease[J] . Biomedicine & Pharmacotherapy, 2004, 58(1):47-55. [10] 马桂燕. 2010年蛋氨酸市场回顾及2011年展望[J] . 饲料广角, 2011, 33(2):13-16. [11] Guo, AC, Jewison T, Wilson M, et al. ECMDB:the E. coli Metabolome Database[J] . Nucleic Acids Research, 2013, 41(Database issue):625-630. [12] Zakataeva NP, Aleshin VV, Tokmakova IL, et al. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux[J] . Febs Letters, 1999, 452(3):228-232. [13] Liu Y, Li Q, Zheng P, et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter[J] . Microbial Cell Factories, 2015, 14:121. [14] 刘亚男. 苏氨酸高产菌株高通量筛选体系的构建和应用[D] . 天津:天津科技大学, 2015. [15] Park J, Lee S. Metabolic pathways and fermentative production of L-aspartate family amino acids[J] . Biotechnology Journal, 2010, 5(6):560-577. [16] Park J, Oh J, Lee K, et al. Rational design of escherichia coli for L-isoleucine production[J] . Acs Synthetic Biology, 2012, 1(11):532-540. [17] Ferla MP, Patrick WM. Bacterial methionine biosynthesis[J] . Microbiology, 2014, 160(8):1571-1584. [18] Velasco AM, Leguina JI, Lazcano A. Molecular evolution of the lysine biosynthetic pathways[J] . Journal of Molecular Evolution, 2002, 55(4):445-459. [19] Chao YP, Patnaik R, Roof WD, et al. Control of gluconeogenic growth by pps and pck in Escherichia coli[J] . Journal of Bacteriology, 1993, 175(21):6939-6944. [20] Zakataeva NP, Aleshin VV, Tokmakova IL, et al. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux[J] . Febs Letters, 1999, 452(3):228-232. [21] Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain[J] . Applied & Environmental Microbiology, 2007, 73(19):6072-6077. [22] 唐玮, 李键, 陈军, 等. 大肠杆菌异源生产丁醇途径组装及启动子优化[J] . 生物工程学报, 2012, 28(11):1328-1336. [23] 王宁宁, 吴振, 江建梅, 等. 酵母粉有机氮源及其在发酵行业的应用[J] . 产业与科技论坛, 2014, 13(2):69-70. [24] 司马迎春. 酵母粉的作用及氮源对Bacillus subtilis 24/pMX45核黄素发酵的影响[D] . 天津:天津大学, 2004. [25] Wang Y, Li Q, Zheng P, et al. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method[J] . Journal of Industrial Microbiology & Biotechnology, 2016, 43(9):1-9. |