Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 71-79.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0964
Previous Articles Next Articles
ZHANG Xue, CHEN Liang-liang, DAI Hong-xia, ZHANG Wen-sheng, REN Wen-yan
Received:
2017-11-10
Online:
2018-05-26
Published:
2018-06-07
ZHANG Xue, CHEN Liang-liang, DAI Hong-xia, ZHANG Wen-sheng, REN Wen-yan. Functional Study of miR-22 in Mouse Embryonic Stem Cell with CRISPR/Cas9 System[J]. Biotechnology Bulletin, 2018, 34(5): 71-79.
[1] Martin GR.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci USA, 1981, 78(12):7634-7638. [2] Martello G, Smith A.The nature of embryonic stem cells[J]. Annu Rev Cell Dev Biol, 2014, 30:647-75. [3] Hackett JA, Surani MA.Regulatory principles of pluripotency:from the ground state up[J]. Cell Stem Cell, 2014, 15(4):416-430. [4] Huang G, Ye S, Zhou X, et al.Molecular basis of embryonic stem cell self-renewal:from signaling pathways to pluripotency network[J]. Cell Mol Life Sci, 2015, 72(9):1741-1757. [5] Chen T, Dent SY.Chromatin modifiers and remodellers:regulators of cellular differentiation[J]. Nat Rev Genet, 2014, 15(2):93-106. [6] Gurtan AM, Sharp PA.The role of miRNAs in regulating gene expression networks[J]. J Mol Biol, 2013, 425(19):3582-600. [7] Ling B, Wang GX, Long G, et al.Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3[J]. J Cancer Res Clin Oncol, 2012, 138(8):1355-1361. [8] Tang Y, Liu X, Su B, et al.microRNA-22 acts as a metastasis suppressor by targeting metadherin in gastric cancer[J]. Mol Med Rep, 2015, 11(1):454-460. [9] Xin M, Qiao Z, Li J, et al.miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase:evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer[J]. Oncotarget, 2016, 7(28):44252-44265. [10] Guo S, Bai R, Liu W, et al.miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy[J]. Tumour Biol, 2014, 35(7):7025-7034. [11] Li G, Wang G, Ma L, et al.miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38alpha[J]. Biochem Biophys Res Commun, 2016, 478(3):1165-1172. [12] Ji D, Li B, Shao Q, et al.MiR-22 Suppresses BMP7 in the Development of Cirrhosis[J]. Cell Physiol Biochem, 2015, 36(3):1026-1036. [13] Zhao H, Wen G, Huang Y, et al.MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2[J]. Arterioscler Thromb Vasc Biol, 2015, 35 (4):918-929. [14] Horvath P, Barrangou R.CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. [15] Marraffini LA, Sontheimer EJ.CRISPR interference:RNA-directed adaptive immunity in bacteria and archaea[J]. Nat Rev Genet, 2010, 11(3):181-190. [16] Mei Y, Wang Y, Chen H, et al.Recent Progress in CRISPR/Cas9 Technology[J]. J Genet Genomics, 2016, 43(2):63-75. [17] Qi LS, Larson MH, Gilbert LA, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. [18] Ran FA, Hsu PD, Lin CY, et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6):1380-1389. [19] Wei C, Liu J, Yu Z, et al.TALEN or Cas9 - rapid, efficient and specific choices for genome modifications[J]. J Genet Genomics, 2013, 40(6):281-289. [20] Cai M, Yang Y.Targeted genome editing tools for disease modeling and gene therapy[J]. Curr Gene Ther, 2014, 14(1):2-9. [21] Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. [22] Wang T, Wei JJ, Sabatini DM, et al.Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166):80-84. [23] Xiao A, Zhang B.Generation of targeted genomic deletions through CRISPR/Cas system in Zebrafish[J]. Methods Mol Biol, 2016, 1451:65-79. [24] Bassett AR, Tibbit C, Ponting CP, et al.Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system[J]. Cell Rep, 2014, 6(6):1178-1179. [25] Wang H, Yang H, Shivalila CS, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. [26] Ryder P, McHale M, Fort A, et al. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing[J]. Plant Cell Rep, 2017, 36(6):1005-1008. [27] Wei W, Xin H, Roy B, et al.Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori[J]. PLoS One, 2014, 9(7):e101210. [28] Gilles AF, Schinko JB, Averof M.Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum[J]. Development, 2015, 142(16):2832-2839. [29] Boyer LA, Lee TI, Cole MF, et al.Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6):947-956. [30] Gangaraju VK, Lin H.MicroRNAs:key regulators of stem cells[J]. Nat Rev Mol Cell Biol, 2009, 10(2):116-125. [31] Stadler B, Ivanovska I, Mehta K, et al.Characterization of microRNAs involved in embryonic stem cell states[J]. Stem Cells Dev, 2010, 19(7):935-950. [32] Houbaviy HB, Murray MF, Sharp PA.Embryonic stem cell-specific MicroRNAs[J]. Dev Cell, 2003, 5(2):351-358. [33] Song SJ, Ito K, Ala U, et al.The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation[J]. Cell Stem Cell, 2013, 13(1):87-101. [34] Huang S, Wang S, Bian C, et al.Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression[J]. Stem Cells Dev, 2012, 21(13):2531-40. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[15] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||