Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 90-96.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0087
Previous Articles Next Articles
ZHONG Jing(), SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing()
Received:
2022-01-19
Online:
2022-11-26
Published:
2022-12-01
Contact:
LU Yang-qing
E-mail:1482144912@qq.com;lyq@gxu.edu.cn
ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus[J]. Biotechnology Bulletin, 2022, 38(11): 90-96.
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
sg RNA1 | F:CACCGTGTAGAGGAAGCGCTCGTCT R:AAACAGACGAGCGCTTCCTCTACAC |
sg RNA2 | F:CACCGCTGCTATGCGCCGTGGAACG R:AAACCGTTCCACGGCGCATAGCAGC |
sg RNA3 | F:CACCGTCGCGGCGGCCACGTTCCA |
R:AAACTGGAACGTGGCCGCCGCGAC | |
sg RNA4 | F:CACCGTGAACCATCCGGGGTCGCGG R:AAACCCGCGACCCCGGATGGTTCAC |
sg RNA5 | F:CACCgCAGTGAACCATCCGGGGTCG R:AAACCGACCCCGGATGGTTCACTGC |
sg RNA6 | F:CACCGCTGGGGTTCACGTAGCAAG R:AAACCTTGCTACGTGAACCCCAGC |
Table 1 sgRNA1-6 primer sequences
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
sg RNA1 | F:CACCGTGTAGAGGAAGCGCTCGTCT R:AAACAGACGAGCGCTTCCTCTACAC |
sg RNA2 | F:CACCGCTGCTATGCGCCGTGGAACG R:AAACCGTTCCACGGCGCATAGCAGC |
sg RNA3 | F:CACCGTCGCGGCGGCCACGTTCCA |
R:AAACTGGAACGTGGCCGCCGCGAC | |
sg RNA4 | F:CACCGTGAACCATCCGGGGTCGCGG R:AAACCCGCGACCCCGGATGGTTCAC |
sg RNA5 | F:CACCgCAGTGAACCATCCGGGGTCG R:AAACCGACCCCGGATGGTTCACTGC |
sg RNA6 | F:CACCGCTGGGGTTCACGTAGCAAG R:AAACCTTGCTACGTGAACCCCAGC |
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
IFN-β qPCR F | TGCAACCATCTTCGTCACCA |
IFN-β qPCR R | GGAGGTGGAGCCGTATTCTG |
PKR qPCR F | CCTATGCAATCAAACGAGTTGAG |
PKR qPCR R | GTCCCTTCCCAGCTGCAATA |
qPCR(CH25H)F qPCR(CH25H)R | ATCCATTCCTCCTCGGATGC AAAGGCACAAGTCGGTGAGT |
Table 2 qPCR primer sequences
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
IFN-β qPCR F | TGCAACCATCTTCGTCACCA |
IFN-β qPCR R | GGAGGTGGAGCCGTATTCTG |
PKR qPCR F | CCTATGCAATCAAACGAGTTGAG |
PKR qPCR R | GTCCCTTCCCAGCTGCAATA |
qPCR(CH25H)F qPCR(CH25H)R | ATCCATTCCTCCTCGGATGC AAAGGCACAAGTCGGTGAGT |
Fig. 2 Establishment of MDA5 KO cell line A:24 h after MDA5 KO transfection;B:PCR identification results graph of MDA5 KO cells;C:sequencing results of PCR products from MDA5 KO cells
Fig. 3 Comparison of morphology and growth rate between MDA5 KO and ordinary DF-1 A:24 h after conventional DF-1 and MDA5 KO were thawed;B:72 h after conventional DF-1 and MDA5 KO were thawed;C:count results of conventional DF-1 and MDA5 KO at 24 h after thawing;D:growth curves of ordinary DF-1 and MDA5 KO 1-3 d after thawing
Fig. 4 Results of IBDV infection with MDA5 KO A:Comparison of normal DF-1 before and after infection with IBDV.B:Comparison of MDA5 KO before and after infection with IBDV. C:Results of IFN-β gene detection after IBDV infection. D:PKR gene test results after IBDV infection. E:Results of CH25H gene detection after IBDV infection. F:Results of IBDV gene detection after IBDV infection
Fig. 5 Results of NDV infection with MDA5 KO A:Comparison of normal DF-1 before and after infection with NDV. B:Comparison of MDA5 KO before and after infection with NDV. C:Results of IFN-β gene detection after NDV infection. D:PKR gene test results after NDV infection. E:Results of CH25H gene detection after NDV infection. F:Results of NDV gene detection after NDV infection
[1] | 文开. 鸡新城疫的病原学、流行病学及综合防控措施[J]. 中国畜禽种业, 2021, 17(9):180-181. |
Wen K. Etiology, epidemiology and comprehensive prevention and control measures of Newcastle disease in chicken[J]. Chin Livest Poult Breed, 2021, 17(9):180-181. | |
[2] | 覃周岚. 鸡传染性法氏囊炎病因及防控[J]. 中国畜禽种业, 2017, 13(3):159. |
Qin ZL. Etiology and prevention and control of infectious bursal disease in chickens[J]. Chin Livest Poult Breed, 2017, 13(3):159. | |
[3] |
Zhang WX, Zuo EW, He Y, et al. Promoter structures and differential responses to viral and non-viral inducers of chicken melanoma differentiation-associated gene 5[J]. Mol Immunol, 2016, 76:1-6.
doi: 10.1016/j.molimm.2016.06.006 URL |
[4] |
de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system[J]. Eur J Immunol, 2021, 51(8):1897-1910.
doi: 10.1002/eji.202049116 URL |
[5] | Yin X, Riva L, Pu Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells[J]. Cell Rep, 2021, 34(2):108628. |
[6] |
Lee CC, Wu CC, Lin TL. Characterization of chicken melanoma differentiation-associated gene 5(MDA5)from alternative translation initiation[J]. Comp Immunol Microbiol Infect Dis, 2012, 35(4):335-343.
doi: 10.1016/j.cimid.2012.02.004 URL |
[7] |
Zhang WX, Zuo EW, He Y, et al. Promoter structures and differential responses to viral and non-viral inducers of chicken melanoma differentiation-associated gene 5[J]. Mol Immunol, 2016, 76:1-6.
doi: 10.1016/j.molimm.2016.06.006 URL |
[8] |
Karpala AJ, Stewart C, McKay J, et al. Characterization of chicken Mda5 activity:regulation of IFN-β in the absence of RIG-I functionality[J]. J Immunol, 2011, 186(9):5397-5405.
doi: 10.4049/jimmunol.1003712 pmid: 21444763 |
[9] |
Kint J, Fernandez-Gutierrez M, Maier HJ, et al. Activation of the chicken type I interferon response by infectious bronchitis coronavirus[J]. J Virol, 2015, 89(2):1156-1167.
doi: 10.1128/JVI.02671-14 pmid: 25378498 |
[10] |
Xiang B, Zhu WX, Li YL, et al. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity[J]. Arch Virol, 2018, 163(6):1407-1417.
doi: 10.1007/s00705-018-3745-6 pmid: 29397456 |
[11] | 韩青松. 鸡MDA5调控新城疫病毒免疫反应机制研究[D]. 杨凌: 西北农林科技大学, 2019. |
Han QS. Study on the mechanism of chicken MDA5 regulating chicken immune response to Newcastle disease virus[D]. Yangling: Northwest A & F University, 2019. | |
[12] |
Lee CC, Wu CC, Lin TL. Chicken melanoma differentiation-associated gene 5(MDA5)recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity[J]. Arch Virol, 2014, 159(7):1671-1686.
doi: 10.1007/s00705-014-1983-9 URL |
[13] | 张蕾, 张海波, 章敬旗, 等. CRISPR/Cas9系统在家禽中应用研究进展[J]. 中国畜牧兽医, 2020, 47(1):140-147. |
Zhang L, Zhang HB, Zhang JQ, et al. Research progress on application of CRISPR/Cas9 system in poultry[J]. China Animal Husb Vet Med, 2020, 47(1):140-147. | |
[14] |
Cheng YQ, Lun MX, Liu YX, et al. CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in STING-mediated IFN-β induction in chicken cells[J]. Front Immunol, 2019, 9:3010.
doi: 10.3389/fimmu.2018.03010 URL |
[15] | 刘欢欢, 谢丽君, 邵志勇, 等. MDA5在先天性免疫抗病毒作用中的研究进展[J]. 中国畜牧兽医, 2015, 42(1):230-233. |
Liu HH, Xie LJ, Shao ZY, et al. Research progress on antiviral effect of MDA5 in innate immunity[J]. China Animal Husb Vet Med, 2015, 42(1):230-233. | |
[16] |
Liao ZH, Dai ZK, Cai CY, et al. Knockout of Atg5 inhibits proliferation and promotes apoptosis of DF-1 cells[J]. In Vitro Cell Dev Biol Anim, 2019, 55(5):341-348.
doi: 10.1007/s11626-019-00342-7 URL |
[17] |
Kasumba DM, Grandvaux N. Therapeutic targeting of RIG-I and MDA5 might not lead to the same Rome[J]. Trends Pharmacol Sci, 2019, 40(2):116-127.
doi: S0165-6147(18)30228-1 pmid: 30606502 |
[18] | Barber Megan R W, Aldridge Jerry R, Webster Robert G, Magor Katharine E. Association of RIG-I with innate immunity of ducks to influenza.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13). |
[19] |
Thompson MR, Sharma S, Atianand M, et al. Interferon γ-inducible protein(IFI)16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses[J]. J Biol Chem, 2014, 289(34):23568-23581.
doi: 10.1074/jbc.M114.554147 pmid: 25002588 |
[20] | 翟景波, 吕昌龙. RLRs家族中RIG-I和MDA-5的研究进展[J]. 微生物学免疫学进展, 2017, 45(1):54-59. |
Zhai J. B.; Lv, C. L. Progress on study of RIG-I and MDA5 in RLRs family[J]Proceedings in Microbiology Immunology, 2017, 45(1):54-59. | |
[21] | Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity[J]. Biochem Pharmacol, 2021, 183:114316. |
[22] | 王振兴. 黄芪甲苷经AMPK/mTOR信号通路调控细胞自噬与凋亡保护PM2. 5诱导急性肺损伤的机制研究[D]. 成都: 成都中医药大学, 2019. |
Wang ZX. Astragaloside Ⅳ regulates autophagy and apoptosis in PM2. 5-induced acute lung injury via AMPK/mTOR pathway[D]. Chengdu: Chengdu University of TCM, 2019. | |
[23] | 孔正茹. 禽网状内皮组织增生病病毒诱导宿主天然免疫反应及感染法氏囊转录组学的研究[D]. 扬州: 扬州大学, 2019. |
Kong ZR. Host innate immune response induced by avian reticuloendotheliosis virus and transcriptomics study of virus infected Bursa[D]. Yangzhou: Yangzhou University, 2019. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[13] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[14] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
[15] | WANG Hai-jie, WANG Cheng-ji, GUO Yang, WANG Yun, CHEN Yan-juan, LIANG Min, WANG Jue, GONG Hui, SHEN Ru-ling. Construction of Coagulation Factor 8 Gene Knockout Mouse Model Based on CRSIPR/Cas9 Technique and Verification of Phenotype [J]. Biotechnology Bulletin, 2022, 38(10): 273-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||