Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (2): 87-95.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0793
Previous Articles Next Articles
XU Yi-hua1,2, LI Qi-qin2, LIU Lian-meng1, WANG Ling1, DING Xin-hua3, HOU Yu-xuan1, HUANG Shi-wen1,2
Received:
2017-09-20
Online:
2018-02-26
Published:
2018-03-12
XU Yi-hua, LI Qi-qin, LIU Lian-meng, WANG Ling, DING Xin-hua, HOU Yu-xuan, HUANG Shi-wen. Research Progress on Epigenetic Regulation in Rice/Arabidopsis Against Attack of Pathogenic Bacteria[J]. Biotechnology Bulletin, 2018, 34(2): 87-95.
[1] Jones JDG, Dangl JL.The plant immune system[J]. Nature, 2006, 444(7117):323. [2] 耿帅锋, 李爱丽, 毛龙. RNA介导的DNA甲基化路径在植物抗病中的研究进展[J]. 中国农业科学, 2015, 48(S):16-22. [3] Zhu QH, Shan WX, Ayliffe M, et al.Epigenetic mechanisms:an emerging player in plant-microbe interactions[J]. Molecular Plant-Microbe Interactions, 2015, 29(3):187-196. [4] Espinas NA, Saze H, Saijo Y.Epigenetic control of defense signaling and priming in plants[J]. Frontiers in Plant Science, 2016, 7(1201):1-7. [5] Ranf S.Sensing of molecular patterns through cell surface immune receptors[J]. Curr Opin Plant Biol, 2017, 38:68-77. [6] Ding B, Wang GL.Chromatin versus pathogens:the function of epigenetics in plant immunity[J]. Frontiers in Plant Science, 2015, 6(675):675. [7] 李智强, 王国梁, 刘文德. 水稻抗病分子机制研究进展[J]. 生物技术通报, 2016, 32(10):97-108. [8] Gijzen M, Ishmael C, Shrestha SD.Epigenetic control of effectors in plant pathogens[J]. Frontiers in Plant Science, 2014, 5:638. [9] Alvarez ME, Nota F, Cambiagno DA.Epigenetic control of plant immunity[J]. Mol Plant Pathol, 2010, 11(4):563-576. [10] 王树昌. 表观遗传学在植物中的研究[J]. 安徽农业科学, 2011, 39(5):2562-2564. [11] Gao S, Jin H.Host small RNAs and plant innate immunity[J]. Non Coding Rnas in Plants, 2011:21-34. [12] Bari R, Jones JD.Role of plant hormones in plant defence responses[J]. Plant Mol Biol, 2009, 69(4):473-488. [13] Koornneef A, Pieterse CM.Cross talk in defense signaling[J]. Plant Physiology, 2008, 146(3):839-844. [14] Vlot AC, Dempsey DA, Klessig DF.Salicylic acid, a multifaceted hormone to combat disease[J]. Annu Rev Phytopathol, 2009, 47(1):177-206. [15] 李新玲, 徐香玲. 植物DNA甲基化与表观遗传[J]. 中国农学通报, 2008, 24(1):123-126. [16] Guseinov VA, Vanyushin BF.Content and localisation of 5-methylcytosine in DNA of healthy and wilt-infected cotton plants[J]. Biochim Biophys Acta, 1975, 395(3):229-238. [17] Pavet V, Quintero C, Cecchini NM, et al.Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae[J]. Molecular Plant-Microbe Interactions, 2006, 19(6):577-587. [18] Dowen RH, Pelizzola M, Schmitz RJ, et al.Widespread dynamic DNA methylation in response to biotic stress[J]. Proc Natl Acad Sci USA, 2012, 109(32):2183-2191. [19] Wang Y, An C, Zhang X, et al.The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses[J]. Plant Cell, 2013, 25(2):762-776. [20] López A, Ramírez V, García-Andrade J, et al.The RNA silencing enzyme RNA polymerase v is required for plant immunity[J]. PLoS Genetics, 2011, 7(12):e1002434. [21] Penterman J, Zilberman D, Jin HH, et al.DNA demethylation in the Arabidopsis genome[J]. Proc Natl Acad Sci USA, 2007, 104(16):6752-6757. [22] Zhu JK.Active DNA Demethylation mediated by DNA glycosylases[J]. Annu Rev Genet, 2009, 43(1):143-166. [23] Yu A, Lepère G, Jay F, et al.Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proc Natl Acad Sci USA, 2013, 110(6):2389-2394. [24] 韦荣昌, 唐其, 马小军, 等. 植物表观遗传学研究进展[J]. 北方园艺, 2013(18):170-173. [25] Kouzarides T.Chromatin modifications and their function[J]. Cell, 2007, 128(4):693. [26] Alvarezvenegas R, Abdallat AA, Guo M, et al.Epigenetic control of a transcription factor at the cross section of two antagonistic pathways[J]. Epigenetics, 2007, 2(2):106-113. [27] Alvarez-Venegas R, Sadder M, Hlavacka A, et al.The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes[J]. Proc Natl Acad Sci USA, 2006, 103(15):6049-6054. [28] Berr A, Mccallum EJ, Alioua A, et al.Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi[J]. Plant Physiology, 2010, 154(3):1403-1414. [29] Li T, Chen X, Zhong X, et al.Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice[J]. Plant Cell, 2013, 25(11):4725-4736. [30] Hou Y, Wang L, Ling W, et al.JMJ704 positively regulates rice defense response against Xanthomonas oryzae pv. oryzae, infection via, reducing H3K4me2/3 associated with negative disease resistance regulators[J]. BMC Plant Biology, 2015, 15(1):286. [31] Wang Z, Zang C, Cui K, et al.Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes[J]. Cell, 2009, 138(5):1019-1031. [32] Zupkovitz G, Tischler J, Posch M, et al.Negative and positive regulation of gene expression by mouse histone deacetylase 1[J]. Molecular & Cellular Biology, 2006, 26(21):7913-7928. [33] Winkler GS, Kristjuhan A, Erdjument-Bromage H, et al.Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo[J]. Proc Natl Acad Sci USA, 2002, 99(6):3517-3522. [34] Defraia CT, Wang Y, Yao J, et al.Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains[J]. BMC Plant Biology, 2013, 13(1):102. [35] De-La-Peña C, Rangel-Cano A, Alvarez-Venegas R. Regulation of disease-responsive genes mediated by epigenetic factors:interaction of Arabidopsis-Pseudomonas[J]. Mol Plant Pathol, 2012, 13(4):388-398. [36] Tian L, Fong MP, Wang JJ, et al.Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development[J]. Genetics, 2005, 169(1):337-345. [37] Choi SM, Song HR, Han S K, et al.HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis[J]. The Plant Journal, 2012, 71(1):135-146. [38] Kim KC, Lai Z, Fan B, et al.Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371. [39] Wang C, Gao F, Wu J, et al.Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression[J]. Plant & Cell Physiology, 2010, 51(8):1291-1299. [40] Ding B, Bellizzi MR, Ning Y, et al.HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. Plant Cell, 2012, 24(9):3783-3794. [41] Pérez M, Cañal MJ, Toorop PE.Expression analysis of epigenetic and abscisic acid-related genes during maturation of Quercus suber somatic embryos[J]. Plant Cell Tissue & Organ Culture, 2015, 121(2):353-366. [42] Cao Y, Dai Y, Cui S, et al.Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis[J]. Plant Cell, 2008, 20(10):2586-2602. [43] Zou B, Hua J.Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis[J]. Plant Physiology, 2014, 165(1):309-318. [44] 潘丽娜, 王振英. 植物表观遗传修饰与病原菌胁迫应答研究进展[J]. 西北植物学报, 2013, 33(1):210-214. [45] Chow HT, Ng DW.Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana[J]. Sci Rep, 2017, 7:46433. [46] Navarro L, Jones JDG.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. [47] Harenberg J, Huhle G, Giese C, et al.Endogenous small RNAs and antibacterial immunity in plants[J]. FEBS Letters, 2008, 582 (18):2679-2684. [48] Fahlgren N, Howell MD, Kasschau K D, et al.High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PLoS One, 2007, 2(2):e219. [49] Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al.A pathogen-inducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci USA, 2006, 103(47):18002-18007. [50] Saze H, Tsugane K, Kanno T, et al.DNA methylation in plants:relationship to small RNAs and histone modifications, and functions in transposon inactivation[J]. Plant & Cell Physiology, 2012, 53(5):766-784. |
[1] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[2] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[3] | XUE Man-de, ZHAO Feng-yue, LI Jie, JIANG Dan-hua. Advances in Histone Variants in Plant Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 1-12. |
[4] | SUN Yu, CHANG Jing-jing, TIAN Chun-jie. Technical Systems of Reorganization and Construction of Crop Rhizosphere Microbiome [J]. Biotechnology Bulletin, 2020, 36(9): 25-30. |
[5] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[6] | ZHANG Xiao-hui, WANG Yi, LI Hui-fang, GAO Jia-li. Antibacterial Action of Lactobacillus acidophilus S-layer proteins Combined with Antibiotics on Escherichia coli and Staphylococcus aureus [J]. Biotechnology Bulletin, 2020, 36(3): 148-152. |
[7] | LIU Meng-yuan, LENG Yan, ZHAI Li-xiang, HE LI-fang, LI Shi-weng. Current Status and Progress on Prokaryotic Transcriptome Study [J]. Biotechnology Bulletin, 2019, 35(6): 164-171. |
[8] | LI Xue-tong, LIN Ying, ZHANG Yuan, LI Ying, LÜ Shu-xia, XU Wen-tao. Application Progress on Aptasensors in Detection of Food-born Pathogenic Bacteria [J]. Biotechnology Bulletin, 2019, 35(4): 125-138. |
[9] | TAN Yu-rong, WANG Dan, GAO Xuan, LIU Jin-ping. Research Advance on Plant Long Noncoding RNAs [J]. Biotechnology Bulletin, 2018, 34(10): 1-10. |
[10] | LIU Ying, GAO Li, FENG Jun-rong. Research Progress on Mitochondrial Epigenetics [J]. Biotechnology Bulletin, 2018, 34(1): 60-66. |
[11] | WANG Gui-hua, ZHANG Xin ,QI Yan-xiang ,WANG Yu-guang ,PENG Jun ,XIE Yi-xian. Expression Analysis of Fusarium Wilt Resistance-Related Genes at the Flower Bud Differentiation Stage of Banana [J]. Biotechnology Bulletin, 2017, 33(7): 83-88. |
[12] | Xu Kai, Chen Xia, Gao Shaorong. The Progress of Induced Pluripotent Stem Cells Research in China [J]. Biotechnology Bulletin, 2015, 31(4): 72-81. |
[13] | Jiang Nan, Pan Xuefeng. The Developments of Epigenetics and Epigenetics-based Modern Biomedicine and Pharmaceutics [J]. Biotechnology Bulletin, 2015, 31(4): 105-119. |
[14] | Jia Ning, Tang Yanyao, Zeng Yanru, Zhao Guomiao, Xu Ya'nan. Research Progress on Apomixis in Plants [J]. Biotechnology Bulletin, 2015, 31(12): 15-24. |
[15] | Yu Qian, Huang Mengna. Detection and Application of Three Food-borne Bacterial Pathogens by Multiplex PCR [J]. Biotechnology Bulletin, 2014, 0(7): 64-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||