[1] Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress[J]. Biochemical Journal, 2005, 388(1):151-157. [2] Caramelo JJ, Iusem ND. When cells lose water:Lessons from biophysics and molecular biology[J]. Progress in Biophysics and Molecular Biology, 2009, 99(1):1-6. [3] Potts M. Desiccation tolerance:a simple process?[J]. Trends in Microbiology, 2001, 9(11):553-559. [4] Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling[J]. Annu Rev Pharmacol Toxicol, 2006, 46:215-234. [5] Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. Journal of Biological Chemistry, 2000, 275(8):5668-5674. [6] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(1):105-132. [7] Anchordoquy TJ, Carpenter JF. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state[J]. Archives of Biochemistry and Biophysics, 1996, 332(2):231-238. [8] Soulages JL, Kim K, Walters C, et al. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean[J]. Plant Physiology, 2002, 128(3):822-832. [9] Reyes JL, Campos F, Wei H, et al. Functional dissection of hydrophilins during in vitro freeze protection[J]. Plant, Cell & Environment, 2008, 31(12):1781-1790. [10] Grelet J, Benamar A, Teyssier E, et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying[J]. Plant Physiology, 2005, 137(1):157-167. [11] Chakrabortee S, Tripathi R, Watson M, et al. Intrinsically disordered proteins as molecular shields[J]. Molecular BioSystems, 2012, 8(1):210-219. [12] Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta, 2003, 217(2):290-298. [13] Li RH, Liu GB, Wang H, et al. Effects of Fe 3+ and Zn 2+ on the structural and thermodynamic properties of a soybean ASR protein[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(3):475-481. [14] Wu G, Zhang H, Sun J, et al. Diverse LEA(late embryogenesis abundant)and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2011, 160(1):32-39. [15] Battaglia M, Olvera-Carrillo Y, Garciarrubio A, et al. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiology, 2008, 148(1):6-24 [16] 刘洋, 邢鑫, 李德全. LEA蛋白的分类与功能研究进展[J]. 生物技术通报, 2011(8):36-43. [17] Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins[J]. Naturwissenschaften, 2007, 94(10):791-812. [18] Swire-Clark GA, Marcotte Jr WR. The wheat LEA protein Em func- tions as an osmoprotective molecule in Saccharomyces cerevisiae [J]. Plant Molecular Biology, 1999, 39(1):117-128. [19] Reyes JL, Rodrigo MJ, Colmenero-flores JM, et al. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro[J]. Plant, Cell & Environment, 2005, 28(6):709-718. [20] Nakayama K, Okawa K, Kakizaki T, et al. Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers[J]. Plant Physiology, 2007, 144(1):513-523. [21] Liu Y, Zheng Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 2005, 331(1):325-332. [22] 俞嘉宁, 张林生, 张劲, 等. 小麦耐逆基因-TaLEA3的克隆及在酵母中的功能分析[J]. 生物工程学报, 2004, 20(6):832-838. [23] Yu JN, Zhang JS, Shan L, et al. Two new group 3 LEA genes of wheat and their functional analysis in yeast[J]. Journal of Integrative Plant Biology, 2005, 47(11):1372-1381. [24] Makarova KS, Aravind L, Wolf YI, et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1):44-79. [25] Omelchenko MV, Wolf YI, Gaidamakova EK, et al. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans:divergent routes of adaptation to thermophily and radiation resistance[J]. BMC Evolutionary Biology, 2005, 5(1):1. [26] Khan F, Singh SP, Mishra BN. Conservation of the LexA repressor binding site in Deinococcus radiodurans[J]. J Integr Bioinform, 2008, 5:86-92. [27] Browne J, Tunnacliffe A, Burnell A. Anhydrobiosis:plant desiccation gene found in a nematode[J]. Nature, 2002, 416(6876):38. [28] Park BJ, Liu Z, Kanno A, et al. Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene[J]. Plant Science, 2005, 169(3):553-558. [29] Tompa P, Kovacs D. Intrinsically disordered chaperones in plants and animals[J]. Biochemistry and Cell Biology, 2010, 88(2):167-174. [30] Liu Y, Gao ZQ, She Z, et al. The structural basis of the response regulator DrRRA from Deinococcus radiodurans[J]. Biochemical and Biophysical Research Communications, 2012, 417(4):1206-1212. [31] Wang L, Xu G, Chen H, et al. DrRRA:a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans [J]. Molecular Microbiology, 2008, 67(6):1211-1222. [32] Wang L, Hu J, Liu M, et al. Proteomic insights into the functional basis for the response regulator DrRRA of Deinococcus radiodurans[J]. International Journal of Radiation Biology, 2016, 92(5):273-280. [33] Liu F, Pang SJ. Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmate[J]. Journal of Experimental Marine Biology and Ecology, 2010, 382(2):82-87. [34] Fredrickson JK, Li SM, Gaidamakova EK, et al. Protein oxidation:key to bacterial desiccation resistance?[J]. The ISME Journal, 2008, 2(4):393-403. [35] Daly MJ, Gaidamakova EK, Matrosova VY, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance[J]. PLoS Biol, 2007, 5(4):e92. [36] Gebicki S, Gill KH, Dean RT, et al. Action of peroxidases on protein hydroperoxides[J]. Redox Report, 2002, 7(4):235-242. |