Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 27-37.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
• Orignal Article • Previous Articles Next Articles
HU Li-ping1, 2, ZHANG Feng1, XU Hui1, LIU Guang-min1, WANG Ya-qin1, HE Hong-ju1, 2
Received:
2016-09-18
Online:
2017-04-25
Published:
2017-04-25
HU Li-ping, ZHANG Feng, XU Hui, LIU Guang-min, WANG Ya-qin, HE Hong-ju. Research Advances in the Structure,Function and Regulation of SWEET Gene Family in Plants[J]. Biotechnology Bulletin, 2017, 33(4): 27-37.
[1] Neuhaus HE. Transport of primary metabolites across the plant vacuolar membrane[J]. FEBS Lett, 2007, 581(12):2223-2226. [2] Kühn C, Grof CP. Sucrose transporters of higher plants[J]. Curr Opin Plant Biol, 2010, 13(3):288-298. [3] Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Mol Plant, 2011, 4(3):377-394. [4] Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants:a physiological perspective[J]. Mol Plant, 2011, 4(4):641-662. [5] Chen LQ, Hou BH, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323):527-532. [6] Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytol, 2014, 201(4):1150-1155. [7] Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance[J]. IUBMB Life, 2015, 67(7):461-471. [8] Looger LL, Lalonde S, Frommer WB. Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells[J]. Plant Physiol, 2005, 138(2):555-557. [9] Bermejo C, Haerizadeh F, Takanaga H, et al. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast[J]. Nat Protoc, 2011, 6(11):1806-1817. [10] Chen LQ, Qu XQ, Hou BH, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065):207-211. [11] Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms[J]. Mol Plant, 2013, 6(3):665-674. [12] Patil G, Valliyodan B, Deshmukh R, et al. Soybean(Glycine max)SWEET gene family:insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC Genomics, 2015, 16:520. [13] Chong J, Piron MC, Meyer S, et al. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. J Exp Bot, 2014, 65(22):6589-6601. [14] Feng CY, Han JX, Han XX, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2):261-272. [15] Sosso D, Luo D, Li QB, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nat Genet, 2015, 47(12):1489-1493. [16] Chen HY, Huh JH, Yu YC, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J]. Plant J, 2015, 83(6):1046-1058. [17] Guo WJ, Nagy R, Chen HY, et al. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves[J]. Plant Physiol, 2014, 164(2):777-789. [18] Klemens PA, Patzke K, Deitmer J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiol, 2013, 163(3):1338-1352. [19] Le Hir R, Spinner L, Klemens PA, et al. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis[J]. Mol Plant, 2015, 8(11):1687-1690. [20] Büttner M, Sauer N. Monosaccharide transporters in plants:structure, function and physiology[J]. BBA-Biomembranes, 2000, 1465(1-2):263-274. [21] Sauer N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Lett, 2007, 581(12):2309-2317. [22] Hirai T, Heymann JAW, Maloney PC, et al. Structural model for 12-helix transporters belonging to the major facilitator superfamily[J]. J Bacteriol, 2003, 185(5):1712-1718. [23] Forrest LR, Krӓmer R, Ziegler C. The structural basis of secondary active transport mechanisms[J]. BBA-Bioenergetics, 2011, 1807(2):167-188. [24] Xuan YH, Hu YB, Chen LQ, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. PNAS, 2013, 110(39):E3685-E3694. [25] Xu Y, Tao Y, Cheung LS, et al. Structures of bacterial homologues of SWEET transporters in two distinct conformations[J]. Nature, 2014, 515(7527):448-452. [26] Wang J, Yan C, Li Y, et al. Crystal structure of a bacterial homologue of SWEET transporters[J]. Cell Res, 2014, 24(12):1486-1489. [27] Lee Y, Nishizawa T, Yamashita K, et al. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter[J]. Nat Commun, 2015, 6:6112. [28] Feng L, Frommer WB. Structure and function of SemiSWEET and SWEET sugar transporters[J]. Trends Biochem Sci, 2015, 40(8):480-486. [29] Tao Y, Cheung LS, Li S, et al. Structure of a eukaryotic SWEET transporter in a homotrimeric complex[J]. Nature, 2015, 527(7577):259-263. [30] Rennie EA, Turgeon R. A comprehensive picture of phloem loading strategies[J]. PNAS, 2009, 106(33):14162-14167. [31] Frank Baker R, Leach KA, Braun DM. SWEET as Sugar:new sucrose effluxers in plants[J]. Mol Plant, 2012, 5(4):766-768. [32] Braun DM. SWEET! The pathway is complete[J]. Science, 2012, 335(6065):173-174. [33] Chu Z, Yuan M, Yao J, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. Gene Dev, 2006, 20(10):1250-1255. [34] Zheng QM, Tang Z, Xu Q, et al. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange(Citrus sinensis)[J]. Plant Cell Tiss Org, 2014, 119(3):609-624. [35] Wei X, Liu F, Chen C, et al. The Malus domestica sugar transporter gene family:identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Front Plant Sci, 2014, 5:569. [36] Ge YX, Angenent GC, Wittich PE, et al. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida[J]. Plant J, 2000, 24(6):725-734. [37] Ge Y, Angenent G, Dahlhaus E, et al. Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida[J]. Mol Genet Genomics, 2001, 265(3):414-423. [38] Lin IW, Sosso D, Chen LQ, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508(7497):546-549. [39] Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nat Genet, 2008, 40(11):1370-1374. [40] Chen LQ, Lin IW, Qu XQ, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. Plant Cell, 2015, 27(3):607-619. [41] Guan YF, Huang XY, Zhu J, et al. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiol, 2008, 147(2):852-863. [42] Sun MX, Huang XY, Yang J, et al. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J]. Plant Reprod, 2013, 26(2):83-91. [43] Wellmer F, Alves-Ferreira M, Dubois A, et al. Genome-wide analysis of gene expression during early Arabidopsis flower development[J]. PLoS Genet, 2006, 2(7):1012-1024. [44] Engel ML, Holmes-Davis R, McCormick S. Green sperm. Identification of male gamete promoters in Arabidopsis[J]. Plant Physiol, 2005, 138(4):2124-2133. [45] Bock KW, Honys D, Ward JM, et al. Integrating membrane transport with male gametophyte development and function through transcriptomics[J]. Plant Physiol, 2006, 140(4):1151-1168. [46] Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. PNAS, 2006, 103(27):10503-10508. [47] Yuan M, Chu Z, Li X, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. Plant Cell, 2010, 22(9):3164-3176. [48] Salts Y, Sobolev I, Chmelnitsky I, et al. Genomic structure and expression of Lestd1, a seven-transmembrane-domain proteon-encoding gene specically expressed in tomato pollen[J]. Isr J Plant Sci, 2005, 53(2):79-88. [49] Quiapim AC, Brito MS, Bernardes LA, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiol, 2009, 149(3):1211-1230. [50] Zhou Y, Liu L, Huang W, et al. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence[J]. PLoS One, 2014, 9(4):e94210. [51] Quirino BF, Normanly J, Amasino RM. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes[J]. Plant Mol Biol, 1999, 40(2):267-278. [52] Seo PJ, Park JM, Kang SK, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1):189-200. [53] Zhao CR, Ikka T, Sawaki Y, et al. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana[J]. BMC Plant Biol, 2009, 9:32. [54] Lauter ANM, Peiffer GA, Yin T, et al. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean(Glycine max)roots and leaves[J]. BMC Genomics, 2014, 15(1):702. [55] Lopes MS, Araus JL. Comparative genomic and physiological analysis of nutrient response to NH 4 + , NH 4 + :NO 3 - and NO 3 - in barley seedlings[J]. Physiol Plantarum, 2008, 134(1):134-150. [56] Redondo-Nieto M, Maunoury N, Mergaert P, et al. Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling?[J]New Phytol, 2012, 195(1):14-19. [57] Yang B, White FF. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice[J]. Mol Plant Microbe In, 2004, 17(11):1192-1200. [58] Antony G, Zhou J, Huang S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. Plant Cell, 2010, 22(11):3864-3876. [59] Römer P, Recht S, Strauβ T, et al. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae[J]. New Phytol, 2010, 187(4):1048-1057. [60] Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant Cell Environ, 2011, 34(11):1958-1969. [61] Yu Y, Streubel J, Balzergue S, et al. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene[J]. Mol Plant Microbe In, 2011, 24(9):1102-1113. [62] Li T, Huang S, Zhou J, et al. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice[J]. Mol Plant, 2013, 6(3):781-789. [63] Streubel J, Pesce C, Hutin M, et al. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae[J]. New Phytol, 2013, 200(3):808-819. [64] Zhou J, Peng Z, Long J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. Plant J, 2015, 82(4):632-643. [65] Cohn M, Bart RS, Shybut M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava[J]. Mol Plant Microbe In, 2014, 27(11):1186-1198. [66] Hu Y, Zhang J, Jia H, et al. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease[J]. PNAS, 2014, 111(4):E521-E529. [67] Siemens J, Keller IJ, Sarx J, et al. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development[J]. Mol Plant Microbe In, 2006, 19(5):480-494. [68] Kay S, Hahn S, Marois E, et al. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Δrep16[J]. Plant J, 2009, 59(6):859-871. [69] Yu X, Wang X, Wang C, et al. Wheat defense genes in fungal(Puccinia striiformis)infection[J]. Funct Integr Genomic, 2010, 10(2):227-239. [70] Kryvoruchko IS, Sinharoy S, Torres-Jerez I, et al. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula[J]. Plant Physiol, 2016, 171(1):554-565. [71] Yamada K, Osakabe Y, Mizoi J, et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides[J]. J Biol Chem, 2010, 285(2):1138-1146. [72] Yue C, Cao HL, Wang L, et al. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season[J]. Plant Mol Biol, 2015, 88(6):591-608. [73] Chardon F, Bedu M, Calenge F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Curr Biol, 2013, 23(8):697-702. [74] He F, Kang J, Zhou X, et al. Variation at the transcriptional level among Chinese natural populations of Arabidopsis thaliana in response to cold stress[J]. Chinese Sci Bull, 2008, 53(19):2989-2999. [75] Durand M, Porcheron B, Hennion N, et al. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots[J]. Plant Physiol, 2016, 170(3):1460-1479. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[3] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[4] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[5] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[6] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[7] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[8] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[9] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[10] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[11] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[12] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[13] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[14] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[15] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||