Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (12): 21-31.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0127
• Orginal Article • Previous Articles Next Articles
LI Hong-yu1, XU Wen-tao1, 2
Received:
2018-02-02
Online:
2018-12-26
Published:
2018-12-24
LI Hong-yu, XU Wen-tao. Research Progress on Circular RNA[J]. Biotechnology Bulletin, 2018, 34(12): 21-31.
[1] Jeck WR, Sorrentino JA, Wang K, et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157. [2] Salzman J, Gawad C, Wang PL, et al.Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2):e30733. [3] Zhang XO, Wang HB, Zhang Y, et al.Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1):134-147. [4] Gao Y, Wang J, Zhao F.CIRI:an efficient and unbiased algorithm for de novo circular RNA identification[J]. Genome Biology, 2015, 16(1):4. [5] Burd CE, Jeck WR, Liu Y, et al.Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genetics, 2010, 6(12):e1001233. [6] AbouHaidar MG, Venkataraman S, Golshani A, et al. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt[J]. Proceedings of the National Academy of Sciences, 2014, 111(40):14542-14547. [7] Hansen TB, Venø MT, Damgaard CK, et al.Comparison of circular RNA prediction tools[J]. Nucleic Acids Research, 2015, 44(6):e58-e58. [8] Sanger HL, Klotz G, Riesner D, et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proceedings of the National Academy of Sciences, 1976, 73(11):3852-3856. [9] Hsu MT, Coca-Prados M.Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720):339-400. [10] Nigro JM, Cho KR, Fearon ER, et al.Scrambled exons[J]. Cell, 1991, 64(3):607-613. [11] Capel B, Swain A, Nicolis S, et al.Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993, 73(5):1019-1030. [12] Memczak S, Jens M, Elefsinioti A, et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338. [13] Greene J, Baird AM, Brady L, et al.Circular RNAs:biogenesis, function and role in human diseases[J]. Frontiers in Molecular Biosciences, 2017, 4:38. [14] Jeck WR, Sharpless NE.Detecting and characterizing circular RNAs[J]. Nature Biotechnology, 2014, 32(5):453-461. [15] Chen C, Sarnow P.Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209):415-417. [16] Petkovic S, Müller S.RNA circularization strategies in vivo and in vitro[J]. Nucleic Acids Research, 2015, 43(4):2454-2465. [17] Stoddard BL.Homing endonucleases from mobile group I introns:discovery to genome engineering[J]. Mobile DNA, 2014, 5(1):7. [18] Costa M, Walbott H, Monachello D, et al. Crystal structures of a group II intron lariat primed for reverse splicing[J]. Science, 2016, 354(6316):aaf9258. [19] Hsiao KY, Sun HS, Tsai SJ.Circular RNA-new member of noncoding RNA with novel functions[J]. Experimental Biology and Medicine, 2017, 242(11):1136-1141. [20] Salzman J, Chen RE, Olsen MN, et al.Cell-type specific features of circular RNA expression[J]. PLoS Genetics, 2013, 9(9):e1003777. [21] Li Z, Rana TM.Therapeutic targeting of microRNAs:current status and future challenges[J]. Nature Reviews Drug Discovery, 2014, 13(8):622-638. [22] Zhao J, Tao Y, Zhou Y, et al.MicroRNA-7:a promising new target in cancer therapy[J]. Cancer Cell International, 2015, 15(1):103. [23] Reddy SDN, Ohshiro K, Rayala SK, et al.MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions[J]. Cancer Research, 2008, 68(20):8195-8200. [24] Kefas B, Godlewski J, Comeau L, et al.microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma[J]. Cancer Research, 2008, 68(10):3566-3572. [25] Kalinowski FC, Giles KM, Candy PA, et al.Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7[J]. PLoS One, 2012, 7(10):e47067. [26] Ning BF, Ding J, Liu J, et al.Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression[J]. Hepatology, 2014, 60(5):1607-1619. [27] Chou, Yu-Ting, et al.EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF[J]. Cancer Research, 2010, 70(21):8822-8831. [28] Hansen, Thomas B, et al.Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388. [29] Hansen TB, Kjems J, Damgaard CK.Circular RNA and miR-7 in cancer[J]. Cancer Research, 2013, 73(18):5609-5612. [30] Hansen TB, Wiklund ED, Bramsen JB, et al.miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. The EMBO Journal, 2011, 30(21):4414-4422. [31] Hacker A, Capel B, Goodfellow P, et al.Expression of Sry, the mouse sex determining gene[J]. Development, 1995, 121(6):1603-1614. [32] Zheng Q, Bao C, Guo W, et al.Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nature Communications, 2016, 7:11215. [33] Wang Y, Chen L, Wu Z, et al.miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL[J]. BMC Cancer, 2016, 16(1):826. [34] Li F, Zhang L, Li W, et al.Circular RNAITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015, 6(8):6001-6013. [35] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al.circRNA biogenesis competes with pre-mRNA splicing[J]. Molecular Cell, 2014, 56(1):55-66. [36] Hentze MW, Preiss T.Circular RNAs:splicing’s enigma variations[J]. The EMBO Journal, 2013, 32(7):923-925. [37] Denzler R, Agarwal V, Stefano J, et al.Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J]. Molecular Cell, 2014, 54(5):766-776. [38] Hurowitz EH, Brown PO.Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae[J]. Genome Biology, 2003, 5(1):R2. [39] Schindler CW, Krolewski JJ, Rush MG.Selective trapping of circular double-stranded DNA molecules in solidifying agarose[J]. Plasmid, 1982, 7(3):263-270. [40] Cocquet J, Chong A, Zhang G, et al.Reverse transcriptase template switching and false alternative transcripts[J]. Genomics, 2006, 88(1):127-131. [41] McManus CJ, Duff MO, Eipper-Mains J, et al. Global analysis of trans-splicing in Drosophila[J]. Proceedings of the National Academy of Sciences, 2010, 107(29):12975-12979. [42] Guo JU, Agarwal V, Guo H, et al.Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biology, 2014, 15(7):409. [43] Hoffmann S, Otto C, Doose G, et al.A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection[J]. Genome Biology, 2014, 15(2):R34. [44] Darbani B, Noeparvar S, Borg S.Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley[J]. Frontiers in Plant Science, 2016, 7:776. [45] Li Z, Huang C, Bao C, et al.Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nature Structural & Molecular Biology, 2015, 22(3):256. [46] Boeckel JN, Jaé N, Heumüller AW, et al.Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circulation Research, 2015, 117(10):884-890. [47] Greene J, Baird AM, Brady L, et al.Circular RNAs:biogenesis, function and role in human diseases[J]. Frontiers in Molecular Biosciences, 2017, 4:38. [48] You X, Vlatkovic I, Babic A, et al.Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nature Neuroscience, 2015, 18(4):603-610. [49] Lukiw W.Circular RNA(circRNA)in Alzheimer’s disease(AD)[J]. Frontiers in Genetics, 2013, 4:307. [50] Xu H, Guo S, Li W, et al.The circular RNACdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Scientific Reports, 2015, 5:12453. [51] Li P, Chen S, Chen H, et al.Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clinica Chimica Acta, 2015, 444:132-136. [52] Chen J, Li Y, Zheng Q, et al.Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer[J]. Cancer letters, 2017, 388:208-219. [53] Zhong Z, Lv M, Chen J.Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma[J]. Scientific Reports, 2016, 6:30919. [54] Qin M, Liu G, Huo X, et al.Hsa_circ_0001649:a circular RNA and potential novel biomarker for hepatocellular carcinoma[J]. Cancer Biomarkers, 2016, 16(1):161-169. [55] Shang X, Li G, Liu H, et al.Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development[J]. Medicine, 2016, 95(22):e3811. [56] Yu L, Gong X, Sun L, et al.The circular RNACdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression[J]. PLoS One, 2016, 11(7):e0158347. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[3] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[4] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[5] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[6] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[7] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[8] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[9] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[10] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[11] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[12] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[13] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[14] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[15] | WANG Yi-fan, HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang. Synthesis and Character Identification of Allohexaploid Between Gossypium hirsutum and G. gossypioides [J]. Biotechnology Bulletin, 2023, 39(5): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||