[1] 齐涛. 中国玉米国际竞争力研究[D]. 杨凌:西北农林科技大学, 2011. [2] 沈平, 章秋艳, 林友华, 等. 推进我国转基因玉米产业化的思考[J]. 中国生物工程杂志, 2016, 36(04):24-29. [3] 康岭生, 王玉民, 姜昱, 等. 转Bt基因玉米的抗螟性及产量分析[J]. 玉米科学, 2009, 17(1):62-64, 70. [4] 陈化榜. 美国转基因玉米的生产概况和发展趋势[J]. 玉米科学, 2008, 16(3):1-3. [5] Brookes G, Barfoot P.Environmental impacts of genetically modified(GM)crop use 1996-2015:Impacts on pesticide use and carbon emissions[C]. GM Crops & Food, 2017, 8(2):117-147. [6] Mungai NW, Motavalli PP, Nelson KA, et al.Differences in yields, residue composition and n mineralization dynamics of Bt and Non-Bt maize[J]. Nutrient Cycling in Agroecosystems, 2005, 73(1):101-109. [7] Dillehay BL, Roth GW, Calvin DD, et al.Performance of Bt corn hybrids, their near isolines, and leading corn hybrids in pennsylvania and maryland[J]. Agronomy Journal, 2004, 96(3):818-824. [8] Pellegrino E, Bedini S, Nuti M, et al.Impact of genetically engineered maize on agronomic, environmental and toxicological traits:a meta-analysis of 21 years of field data[J]. Scientific Reports, 2018, 8(1):2045-2322. [9] Wang X, Zhang X, Yang JT, et al.Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes[J]. The Plant J, 2018, 93(6):1007-1016. [10] Xue J, Liang G, Crickmore N, et al.Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects[J]. FEMS microbiology letters, 2008, 280(1):95-101. [11] Xue J, Zhou ZS, Song FP, et al.Identification of the minimal active fragment of the Cry1Ah toxin[J]. Biotechnology letters, 2011, 33(3):531-537. [12] Li XY, Lang ZH, Zhang J, et al.Acquisition of insect-resistant transgenic maize harboring a truncated cry1Ah gene via agrobacterium-mediated transformation[J]. Journal of Integrative Agriculture, 2014, 13(5):937-944. [13] 戴军, 李秀影, 朱莉, 等. 转Bt cry1Ah基因抗虫玉米的分子检测及农艺性状分析[J]. 生物技术通报, 2014(5):62-68. [14] 刘柱. 可变盐单胞菌中草甘膦抗性EPSP合酶新基因克隆、大肠杆菌表达及其抗性机制的研究[D]. 雅安:四川大学, 2004. [15] 宋苗, 汪海, 张杰, 等. 转Bt cry1Ah基因抗虫玉米对亚洲玉米螟、棉铃虫和黏虫的抗性评价[J]. 生物技术通报, 2016, 32(6):69-75. [16] Trtikova M, Wikmark OG, Zemp N, et al.Transgene expression and Bt protein content in transgenic Bt maize(MON810)under optimal and stressful environmental conditions[J]. PLoS One, 2015, 10(4):e0123011. [17] 吴乃虎. 基因工程原理(下册)[M]. 北京:科学出版社, 2001:278-290. [18] Paz J, Pla M, Papazova N, et al.Stability of the MON 810 transgene in maize[J]. Plant Molecular Biology, 2010, 74(6):563-571. [19] Makarevitch I, Stupar RM, Iniguez AL, et al.Natural variation for alleles under epigenetic control by the maize chromomethylase Zmet2[J]. Genetics, 2007, 177(2):749-760. [20] Sigman MJ, Slotkin RK.The first rule of plant transposable element silencing:location, location, location[J]. The Plant Cell, 2016, 28(2):304-313. [21] Oka R, Zicola J, Weber B, et al.Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize[J]. Genome Biology, 2017, 18(1):137. [22] Liu HJ, Luo X, Niu LY, et al.Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize[J]. Molecular Plant, 2017, 10(3):414-426. [23] 刘月娥. 玉米对区域光、温、水资源变化的响应研究[D]. 北京:中国农业科学院, 2013. [24] 康领生, 姜志磊, 刘洋, 等. 转基因玉米SW12-859的抗螟性及农艺性状评价[J]. 玉米科学, 2017, 25(5):45-48. [25] 王延锋. 转Bt基因抗虫玉米田间试验与遗传稳定性分析[D]. 哈尔滨:东北农业大学, 2010. |