Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 72-83.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0160
Previous Articles Next Articles
Received:
2022-02-09
Online:
2023-01-26
Published:
2023-02-02
Contact:
WANG Cui-cui
E-mail:cuicuiwang@bpi.edu.cn
WANG Cui-cui, FU Da-qi. Research Progress in the Effects of Ubiquitin-proteasome System on Plant Agronomic Traits[J]. Biotechnology Bulletin, 2023, 39(1): 72-83.
物种 Species | BTB | F-boxa | HECT | RINGb |
---|---|---|---|---|
鼠耳芥Arabidopsis halleri | 63 | 850 | 9 | 480 |
琴叶拟南芥Arabidopsis lyrate | 77 | 989 | 10 | 542 |
拟南芥Arabidopsis thaliana | 64 | 697 | 7 | 516 |
无油樟Amborella tricopoda | 56 | 230 | 7 | 314 |
二穗短柄草 Brachypodium distachyon | 178 | 813 | 10 | 554 |
白菜Brassica rapa | 97 | 975 | 10 | 802 |
荸荠Boechera stricta | 75 | 505 | 9 | 473 |
荠菜Capsella rubella | 69 | 970 | 8 | 527 |
假稻属Leersia perrieri | 110 | 542 | 9 | 460 |
花药野生稻Oryza brachyantha | 78 | 264 | 12 | 391 |
斑点稻Oryza punctata | 111 | 535 | 8 | 485 |
稻Oryza sativa | 156 | 732 | 8 | 532 |
高粱Sorghum bicolor | 158 | 678 | 9 | 563 |
玉米Zea mays | 95 | 331 | 20 | 699 |
Table 1 Number of E3 ligases predicted in 14 selected plant genomes
物种 Species | BTB | F-boxa | HECT | RINGb |
---|---|---|---|---|
鼠耳芥Arabidopsis halleri | 63 | 850 | 9 | 480 |
琴叶拟南芥Arabidopsis lyrate | 77 | 989 | 10 | 542 |
拟南芥Arabidopsis thaliana | 64 | 697 | 7 | 516 |
无油樟Amborella tricopoda | 56 | 230 | 7 | 314 |
二穗短柄草 Brachypodium distachyon | 178 | 813 | 10 | 554 |
白菜Brassica rapa | 97 | 975 | 10 | 802 |
荸荠Boechera stricta | 75 | 505 | 9 | 473 |
荠菜Capsella rubella | 69 | 970 | 8 | 527 |
假稻属Leersia perrieri | 110 | 542 | 9 | 460 |
花药野生稻Oryza brachyantha | 78 | 264 | 12 | 391 |
斑点稻Oryza punctata | 111 | 535 | 8 | 485 |
稻Oryza sativa | 156 | 732 | 8 | 532 |
高粱Sorghum bicolor | 158 | 678 | 9 | 563 |
玉米Zea mays | 95 | 331 | 20 | 699 |
[1] |
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments[J]. Plant Cell Environ, 2019, 42(10): 2931-2944.
doi: 10.1111/pce.13633 URL |
[2] |
Linden KJ, Callis J. The ubiquitin system affects agronomic plant traits[J]. J Biol Chem, 2020, 295(40): 13940-13955.
doi: 10.1074/jbc.REV120.011303 URL |
[3] |
Coego A, Julian J, Lozano-Juste J, et al. Ubiquitylation of ABA receptors and protein phosphatase 2C coreceptors to modulate ABA signaling and stress response[J]. Int J Mol Sci, 2021, 22(13): 7103.
doi: 10.3390/ijms22137103 URL |
[4] | Doroodian P, Hua ZH. The ubiquitin switch in plant stress response[J]. Plants(Basel), 2021, 10(2): 246. |
[5] |
Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nat Rev Mol Cell Biol, 2009, 10(6): 385-397.
doi: 10.1038/nrm2688 URL |
[6] |
Marshall RS, Vierstra RD. Dynamic regulation of the 26S proteasome:from synthesis to degradation[J]. Front Mol Biosci, 2019, 6:40.
doi: 10.3389/fmolb.2019.00040 pmid: 31231659 |
[7] |
Hatfield PM, Gosink MM, Carpenter TB, et al. The ubiquitin-activating enzyme(E1)gene family in Arabidopsis thaliana[J]. Plant J, 1997, 11(2): 213-226.
pmid: 9076989 |
[8] |
Xu L, Ménard R, Berr A, et al. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana[J]. Plant J, 2009, 57(2): 279-288.
doi: 10.1111/j.1365-313X.2008.03684.x URL |
[9] |
Cui F, Liu LJ, Zhao QZ, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. Plant Cell, 2012, 24(1): 233-244.
doi: 10.1105/tpc.111.093062 URL |
[10] |
Wan XR, Mo AQ, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. J Biosci Bioeng, 2011, 111(4): 478-484.
doi: 10.1016/j.jbiosc.2010.11.021 URL |
[11] |
Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis[J]. Plant Mol Biol, 2010, 72(4/5): 357-367.
doi: 10.1007/s11103-009-9575-x URL |
[12] | Chung E, Cho CW, So HA, et al. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis[J]. PLoS One, 2013, 8(6): e66056. |
[13] |
Pan WB, Lin BY, Yang XY, et al. The UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2020, 117(44): 27694-27702.
doi: 10.1073/pnas.2007366117 URL |
[14] |
Peng MS, Hannam C, Gu HL, et al. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. Plant J, 2007, 50(2): 320-337.
doi: 10.1111/j.1365-313X.2007.03050.x URL |
[15] |
Liu X, Song LL, Zhang H, et al. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae[J]. Mol Plant Pathol, 2021, 22(12): 1613-1623.
doi: 10.1111/mpp.13132 URL |
[16] |
Freemont PS. Ubiquitination:RING for destruction?[J]. Curr Biol, 2000, 10(2): R84-R87.
doi: 10.1016/s0960-9822(00)00287-6 pmid: 10662664 |
[17] |
Azevedo C, Santos-Rosa MJ, Shirasu K. The U-box protein family in plants[J]. Trends Plant Sci, 2001, 6(8): 354-358.
pmid: 11495788 |
[18] |
Mazzucotelli E, Belloni S, Marone D, et al. The e3 ubiquitin ligase gene family in plants:regulation by degradation[J]. Curr Genomics, 2006, 7(8): 509-522.
doi: 10.2174/138920206779315728 pmid: 18369404 |
[19] |
Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance[J]. J Cell Sci, 2012, 125(Pt 3): 531-537.
doi: 10.1242/jcs.091777 pmid: 22389392 |
[20] |
Downes BP, Stupar RM, Gingerich DJ, et al. The HECT ubiquitin-protein ligase(UPL)family in Arabidopsis:UPL3 has a specific role in trichome development[J]. Plant J, 2003, 35(6): 729-742.
pmid: 12969426 |
[21] |
Ohi MD, Vander Kooi CW, Rosenberg JA, et al. Structural insights into the U-box, a domain associated with multi-ubiquitination[J]. Nat Struct Biol, 2003, 10(4): 250-255.
pmid: 12627222 |
[22] |
Chen LY, Hellmann H. Plant E3 ligases:flexible enzymes in a sessile world[J]. Mol Plant, 2013, 6(5): 1388-1404.
doi: 10.1093/mp/sst005 URL |
[23] |
Sharma B, Taganna J. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato[J]. Sci Rep, 2020, 10(1): 9581.
doi: 10.1038/s41598-020-66553-1 pmid: 32533036 |
[24] | 田爱梅, 于晖, 曹家树. 植物E3泛素连接酶的分类与功能[J]. 中国细胞生物学学报, 2020, 42(5): 907-915. |
Tian AM, Yu H, Cao JS. Classification and function of E3 ubiquitin ligase in plants[J]. Chin J Cell Biol, 2020, 42(5): 907-915. | |
[25] |
Guo LQ, Nezames CD, Sheng LX, et al. Cullin-RING ubiquitin ligase family in plant abiotic stress PathwaysF[J]. J Integr Plant Biol, 2013, 55(1): 21-30.
doi: 10.1111/jipb.12019 |
[26] |
Heyman J, de Veylder L. The anaphase-promoting complex/cyclosome in control of plant development[J]. Mol Plant, 2012, 5(6): 1182-1194.
doi: 10.1093/mp/sss094 pmid: 23034505 |
[27] |
Eloy NB, de Freitas Lima M, Ferreira PCG, et al. The role of the anaphase-promoting complex/cyclosome in plant growth[J]. Crit Rev Plant Sci, 2015, 34(5): 487-505.
doi: 10.1080/07352689.2015.1078613 URL |
[28] |
Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell, 1999, 11(5): 949-956.
doi: 10.1105/tpc.11.5.949 pmid: 10330478 |
[29] | Tian YK, Zheng H, Zhang F, et al. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR[J]. Sci Adv, 2019, 5(4): eaau7246. |
[30] |
Chen PX, Zhi F, Li XW, et al. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple[J]. Plant Physiol, 2022, 188(1): 540-559.
doi: 10.1093/plphys/kiab420 URL |
[31] | Morimoto K, Mizoi J, Qin F, et al. Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress[J]. PLoS One, 2013, 8(12): e80457. |
[32] |
Qin F, Sakuma Y, Tran LSP, et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression[J]. Plant Cell, 2008, 20(6): 1693-1707.
doi: 10.1105/tpc.107.057380 URL |
[33] | Morimoto K, Ohama N, Kidokoro S, et al. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis[J]. Proc Natl Acad Sci USA, 2017, 114(40): E8528-E8536. |
[34] |
Cheng MC, Hsieh EJ, Chen JH, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response[J]. Plant Physiol, 2012, 158(1): 363-375.
doi: 10.1104/pp.111.189738 URL |
[35] |
Ning YS, Jantasuriyarat C, Zhao QZ, et al. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice[J]. Plant Physiol, 2011, 157(1): 242-255.
doi: 10.1104/pp.111.180893 pmid: 21719639 |
[36] |
Yu JY, Kang L, Li YY, et al. RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in Arabidopsis[J]. J Integr Plant Biol, 2021, 63(3): 484-493.
doi: 10.1111/jipb.13019 URL |
[37] |
Dou LR, He KK, Peng JL, et al. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA[J]. Nat Commun, 2021, 12(1): 2181.
doi: 10.1038/s41467-021-22455-y pmid: 33846350 |
[38] |
Joo H, Lim CW, Lee SC. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance[J]. Plant J, 2019, 100(2): 399-410.
doi: 10.1111/tpj.14451 URL |
[39] |
Joo H, Lim CW, Lee SC. The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1[J]. Plant Cell Environ, 2020, 43(8): 1911-1924.
doi: 10.1111/pce.13789 URL |
[40] |
Joo H, Lim CW, Lee SC. A pepper RING-type E3 ligase, CaASRF1, plays a positive role in drought tolerance via modulation of CaAIBZ1 stability[J]. Plant J, 2019, 98(1): 5-18.
doi: 10.1111/tpj.14191 URL |
[41] |
Yang RR, Wang T, Shi WS, et al. E3 ubiquitin ligase ATL61 acts as a positive regulator in abscisic acid mediated drought response in Arabidopsis[J]. Biochem Biophys Res Commun, 2020, 528(2): 292-298.
doi: 10.1016/j.bbrc.2020.05.067 URL |
[42] |
Seo DH, Ryu MY, Jammes F, et al. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses[J]. Plant Physiol, 2012, 160(1): 556-568.
doi: 10.1104/pp.112.202143 URL |
[43] |
Cho SK, Ryu MY, Song C, et al. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress[J]. Plant Cell, 2008, 20(7): 1899-1914.
doi: 10.1105/tpc.108.060699 URL |
[44] |
Wang HJ, Schippers JHM. The role and regulation of autophagy and the proteasome during aging and senescence in plants[J]. Genes, 2019, 10(4): 267.
doi: 10.3390/genes10040267 URL |
[45] |
Kim JH, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses[J]. Plant Physiol, 2013, 162(3): 1733-1749.
doi: 10.1104/pp.113.220103 URL |
[46] |
Gao T, Wu YR, Zhang YY, et al. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J]. Plant Mol Biol, 2011, 76(1/2): 145-156.
doi: 10.1007/s11103-011-9775-z URL |
[47] |
Vishwakarma K, Upadhyay N, Kumar N, et al. Abscisic acid signaling and abiotic stress tolerance in plants:a review on current knowledge and future prospects[J]. Front Plant Sci, 2017, 8:161.
doi: 10.3389/fpls.2017.00161 pmid: 28265276 |
[48] |
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7:571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[49] |
Shu K, Luo XF, Meng YJ, et al. Toward a molecular understanding of abscisic acid actions in floral transition[J]. Plant Cell Physiol, 2018, 59(2): 215-221.
doi: 10.1093/pcp/pcy007 pmid: 29361058 |
[50] |
Yang WQ, Zhang W, Wang XX. Post-translational control of ABA signalling:the roles of protein phosphorylation and ubiquitination[J]. Plant Biotechnol J, 2017, 15(1): 4-14.
doi: 10.1111/pbi.12652 URL |
[51] |
乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1389 |
Wu FZ, Wang HX. Low temperature stress response mediated by protein ubiquitination in plant[J]. Biotechnol Bull, 2021, 37(6): 225-235. | |
[52] | Liu Y, Xiao SY, Sun HR, et al. AtPPRT1, an E3 ubiquitin ligase, enhances the thermotolerance in Arabidopsis[J]. Plants(Basel), 2020, 9(9): 1074. |
[53] |
Min HJ, Jung YJ, Kang BG, et al. CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice(Oryza sativa L.)[J]. Mol Cells, 2016, 39(3): 250-257.
doi: 10.14348/molcells.2016.2290 URL |
[54] |
Luo JH, Shen GX, Yan JQ, et al. AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment[J]. Plant J, 2006, 46(4): 649-657.
doi: 10.1111/j.1365-313X.2006.02730.x pmid: 16640601 |
[55] |
Lim SD, Cho HY, Park YC, et al. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance[J]. J Exp Bot, 2013, 64(10): 2899-2914.
doi: 10.1093/jxb/ert143 pmid: 23698632 |
[56] |
Kim JH, Lim SD, Jang CS. Oryza sativa heat-induced RING finger protein 1(OsHIRP1)positively regulates plant response to heat stress[J]. Plant Mol Biol, 2019, 99(6): 545-559.
doi: 10.1007/s11103-019-00835-9 URL |
[57] |
Ruan WY, Guo MN, Wang XQ, et al. Two RING-finger ubiquitin E3 ligases regulate the degradation of SPX4, an internal phosphate sensor, for phosphate homeostasis and signaling in rice[J]. Mol Plant, 2019, 12(8): 1060-1074.
doi: S1674-2052(19)30132-7 pmid: 31002982 |
[58] |
Xu GY, Chen WJ, Song LM, et al. FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio[J]. J Exp Bot, 2019, 70(21): 6375-6388.
doi: 10.1093/jxb/erz378 URL |
[59] |
Maraschin F, Memelink J, Offringa R. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation[J]. Plant J, 2009, 59(1): 100-109.
doi: 10.1111/j.1365-313X.2009.03854.x URL |
[60] |
Hind SR, Pulliam SE, Veronese P, et al. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens[J]. Plant J, 2011, 65(3): 480-491.
doi: 10.1111/j.1365-313X.2010.04437.x URL |
[61] |
Katsir L, Schilmiller AL, Staswick PE, et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. Proc Natl Acad Sci USA, 2008, 105(19): 7100-7105.
doi: 10.1073/pnas.0802332105 pmid: 18458331 |
[62] | An CP, Li L, Zhai QZ, et al. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin[J]. PNAS, 2017, 114(42): E8930-E89397. |
[63] |
Zhang HW, Cui F, Wu YR, et al. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis[J]. Plant Cell, 2015, 27(1): 214-227.
doi: 10.1105/tpc.114.134163 URL |
[64] |
Thomma BP, Eggermont K, Penninckx IA, et al. Separate jasmonate-dependent and Sal Icylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens[J]. Proc Natl Acad Sci USA, 1998, 95(25): 15107-15111.
doi: 10.1073/pnas.95.25.15107 pmid: 9844023 |
[65] |
Devoto A, Nieto-Rostro M, Xie DX, et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis[J]. Plant J, 2002, 32(4): 457-466.
doi: 10.1046/j.1365-313X.2002.01432.x URL |
[66] |
Durrant WE, Dong X. Systemic acquired resistance[J]. Annu Rev Phytopathol, 2004, 42:185-209.
pmid: 15283665 |
[67] |
Ding YL, Sun TJ, Ao K, et al. Opposite roles of Sal Icylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell, 2018, 173(6): 1454-1467. e15.
doi: 10.1016/j.cell.2018.03.044 URL |
[68] |
González-Lamothe R, Tsitsigiannis DI, Ludwig AA, et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. Plant Cell, 2006, 18(4): 1067-1083.
doi: 10.1105/tpc.106.040998 pmid: 16531490 |
[69] |
Zhu YF, Li YB, Fei F, et al. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat(Triticum aestivum L.)[J]. Plant J, 2015, 84(1): 154-168.
doi: 10.1111/tpj.12966 URL |
[70] |
Liu Y, Wang KR, Cheng Q, et al. Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to Pseudomonas syringae in Arabidopsis[J]. J Exp Bot, 2020, 71(18): 5562-5576.
doi: 10.1093/jxb/eraa255 pmid: 32453812 |
[71] |
Tan X, Calderon-Villalobos LIA, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136): 640-645.
doi: 10.1038/nature05731 URL |
[72] |
Kazan K, Manners JM. The interplay between light and jasmonate signalling during defence and development[J]. J Exp Bot, 2011, 62(12): 4087-4100.
doi: 10.1093/jxb/err142 pmid: 21705384 |
[73] |
Murase K, Hirano Y, Sun TP, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221): 459-463.
doi: 10.1038/nature07519 URL |
[74] | Hao DD, Jin L, Wen X, et al. The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis[J]. Proc Natl Acad Sci USA, 2021, 118(6): e2024592118. |
[75] |
Sadanandom A, Bailey M, Ewan R, et al. The ubiquitin-proteasome system:central modifier of plant signalling[J]. New Phytol, 2012, 196(1): 13-28.
doi: 10.1111/j.1469-8137.2012.04266.x pmid: 22897362 |
[76] |
Lee BD, Kim MR, Kang MY, et al. The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering[J]. Nat Commun, 2017, 8(1): 2259.
doi: 10.1038/s41467-017-02476-2 URL |
[77] |
Imaizumi T, Tran HG, Swartz TE, et al. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis[J]. Nature, 2003, 426(6964): 302-306.
doi: 10.1038/nature02090 URL |
[78] |
Más P, Kim WY, Somers DE, et al. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana[J]. Nature, 2003, 426(6966): 567-570.
doi: 10.1038/nature02163 URL |
[79] |
Kiba T, Henriques R, Sakakibara H, et al. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana[J]. Plant Cell, 2007, 19(8): 2516-2530.
doi: 10.1105/tpc.107.053033 URL |
[80] |
Wang L, Fujiwara S, Somers DE. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock[J]. EMBO J, 2010, 29(11): 1903-1915.
doi: 10.1038/emboj.2010.76 pmid: 20407420 |
[81] |
Nakamichi N, Kita M, Niinuma K, et al. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway[J]. Plant Cell Physiol, 2007, 48(6): 822-832.
doi: 10.1093/pcp/pcm056 pmid: 17504813 |
[82] |
Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903): 167-170.
doi: 10.1038/nature00998 URL |
[83] |
Park BS, Eo HJ, Jang IC, et al. Ubiquitination of LHY by SINAT5 regulates flowering time and is inhibited by DET1[J]. Biochem Biophys Res Commun, 2010, 398(2): 242-246.
doi: 10.1016/j.bbrc.2010.06.067 URL |
[84] |
Mizoguchi T, Wheatley K, Hanzawa Y, et al. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis[J]. Dev Cell, 2002, 2(5): 629-641.
doi: 10.1016/s1534-5807(02)00170-3 pmid: 12015970 |
[85] |
Park BS, Sang W, Yeu SY, et al. Post-translational regulation of FLC is mediated by an E3 ubiquitin ligase activity of SINAT5 in Arabidopsis[J]. Plant Sci, 2007, 173(2): 269-275.
doi: 10.1016/j.plantsci.2007.06.001 URL |
[86] |
Zhang YF, Li DY, Zhang HJ, et al. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways[J]. BMC Plant Biol, 2015, 15:252.
doi: 10.1186/s12870-015-0614-2 URL |
[87] | Du YW, He W, Deng CW, et al. Flowering-related RING protein 1(FRRP1)regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice(Oryza sativa)[J]. PLoS One, 2016, 11(3): e0150458. |
[88] |
Takada S, Akter A, Itabashi E, et al. The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables[J]. Sci Rep, 2019, 9(1): 13843.
doi: 10.1038/s41598-019-50122-2 URL |
[89] |
Shea DJ, Itabashi E, Takada S, et al. The role of FLOWERING LOCUS C in vernalization of Brassica:the importance of vernalization research in the face of climate change[J]. Crop Pasture Sci, 2018, 69(1): 30.
doi: 10.1071/CP16468 URL |
[90] |
Zhu CM, Peng Q, Fu DB, et al. The E3 ubiquitin ligase HAF1 modulates circadian accumulation of EARLY FLOWERING3 to control heading date in rice under long-day conditions[J]. Plant Cell, 2018, 30(10): 2352-2367.
doi: 10.1105/tpc.18.00653 URL |
[91] |
Yang Y, Fu DB, Zhu CM, et al. The RING-finger ubiquitin ligase HAF1 mediates heading date 1 degradation during photoperiodic flowering in rice[J]. Plant Cell, 2015, 27(9): 2455-2468.
doi: 10.1105/tpc.15.00320 URL |
[92] |
Brambilla V, Gomez-Ariza J, Cerise M, et al. The importance of being on time:regulatory networks controlling photoperiodic flowering in cereals[J]. Front Plant Sci, 2017, 8:665.
doi: 10.3389/fpls.2017.00665 pmid: 28491078 |
[93] |
Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks[J]. J Exp Bot, 2009, 60(7): 1979-1989.
doi: 10.1093/jxb/erp040 pmid: 19264752 |
[94] |
Yu YH, Meng XX, Guo DL, et al. Grapevine U-box E3 ubiquitin ligase VlPUB38 negatively regulates fruit ripening by facilitating abscisic-aldehyde oxidase degradation[J]. Plant Cell Physiol, 2021, 61(12): 2043-2054.
doi: 10.1093/pcp/pcaa118 pmid: 32976591 |
[95] |
Liu S, Tong M, Zhao LF, et al. The ARRE RING-type E3 ubiquitin ligase negatively regulates cuticular wax biosynthesis in Arabidopsis thaliana by controlling ECERIFERUM1 and ECERIFERUM3 protein levels[J]. Front Plant Sci, 2021, 12:752309.
doi: 10.3389/fpls.2021.752309 URL |
[96] |
Wei Y, Jin JT, Xu YX, et al. Ethylene-activated MdPUB24 mediates ubiquitination of MdBEL7 to promote chlorophyll degradation in apple fruit[J]. Plant J, 2021, 108(1): 169-182.
doi: 10.1111/tpj.15432 URL |
[97] |
Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5): 623-630.
doi: 10.1038/ng2014 URL |
[98] |
Li N, Li YH. Ubiquitin-mediated control of seed size in plants[J]. Front Plant Sci, 2014, 5:332.
doi: 10.3389/fpls.2014.00332 pmid: 25071811 |
[99] |
Li N, Xu R, Li YH. Molecular networks of seed size control in plants[J]. Annu Rev Plant Biol, 2019, 70:435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704 |
[100] |
Miller C, Wells R, McKenzie N, et al. Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size, and crop yields in Brassica napus[J]. Plant Cell, 2019, 31(10): 2370-2385.
doi: 10.1105/tpc.18.00577 URL |
[101] |
Vanhaeren H, Nam YJ, de Milde L, et al. Forever young:the role of ubiquitin receptor DA1 and E3 ligase BIG BROTHER in controlling leaf growth and development[J]. Plant Physiol, 2017, 173(2): 1269-1282.
doi: 10.1104/pp.16.01410 pmid: 28003326 |
[102] |
Liu H, Li HF, Hao CY, et al. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat(Triticum aestivum L.)[J]. Plant Biotechnol J, 2020, 18(5): 1330-1342.
doi: 10.1111/pbi.13298 URL |
[103] |
Shi CL, Ren YL, Liu LL, et al. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiol, 2019, 180(1): 381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160 |
[104] |
Yin PC, Ma QX, Wang H, et al. Small leaf and bushy1 controls organ size and lateral branching by modulating the stability of big seeds1 in Medicago truncatula[J]. New Phytol, 2020, 226(5): 1399-1412.
doi: 10.1111/nph.16449 URL |
[105] |
Kurepa J, Toh-E A, Smalle JA. 26S proteasome regulatory particle mutants have increased oxidative stress tolerance[J]. Plant J, 2008, 53(1): 102-114.
doi: 10.1111/j.1365-313X.2007.03322.x pmid: 17971041 |
[106] |
Smalle J, Kurepa J, Yang PZ, et al. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling[J]. Plant Cell, 2003, 15(4): 965-980.
pmid: 12671091 |
[107] |
Wang SH, Kurepa J, Smalle JA. The Arabidopsis 26S proteasome subunit RPN1a is required for optimal plant growth and stress responses[J]. Plant Cell Physiol, 2009, 50(9): 1721-1725.
doi: 10.1093/pcp/pcp105 URL |
[108] |
Shringarpure R, Grune T, Mehlhase J, et al. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome[J]. J Biol Chem, 2003, 278(1): 311-318.
doi: 10.1074/jbc.M206279200 pmid: 12401807 |
[109] | Üstün S, Sheikh A, Gimenez-Ibanez S, et al. The proteasome acts as a hub for plant immunity and is targeted by Pseudomonas type III effectors[J]. Plant Physiol, 2016, 172(3): 1941-1958. |
[110] |
Li XM, Chao DY, Wu Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nat Genet, 2015, 47(7): 827-833.
doi: 10.1038/ng.3305 URL |
[111] |
Sung DY, Kim TH, Komives EA, et al. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis[J]. Plant J, 2009, 59(5): 802-813.
doi: 10.1111/j.1365-313X.2009.03914.x URL |
[112] |
Ahn MY, Seo DH, Kim WT. PUB22 and PUB23 U-box E3 ubiquitin ligases negatively regulate 26S proteasome activity under proteotoxic stress conditions[J]. J Integr Plant Biol, 2022, 64(3): 625-631.
doi: 10.1111/jipb.13209 |
[113] |
Sun HH, Fukao Y, Ishida S, et al. Proteomics analysis reveals a highly heterogeneous proteasome composition and the post-translational regulation of peptidase activity under pathogen signaling in plants[J]. J Proteome Res, 2013, 12(11): 5084-5095.
doi: 10.1021/pr400630w pmid: 23991809 |
[114] |
Cai YM, Yu J, Ge Y, et al. Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis[J]. New Phytol, 2018, 218(3): 1143-1155.
doi: 10.1111/nph.14676 URL |
[115] |
Han JJ, Yang XY, Wang Q, et al. The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress[J]. New Phytol, 2019, 221(3): 1359-1368.
doi: 10.1111/nph.15471 URL |
[116] |
Dielen AS, Sassaki FT, Walter J, et al. The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the lettuce mosaic Potyvirus HcPro protein[J]. Mol Plant Pathol, 2011, 12(2): 137-150.
doi: 10.1111/j.1364-3703.2010.00654.x URL |
[117] |
Ueda M, Matsui K, Ishiguro S, et al. Arabidopsis RPT2a encoding the 26S proteasome subunit is required for various aspects of root meristem maintenance, and regulates gametogenesis redundantly with its homolog, RPT2b[J]. Plant Cell Physiol, 2011, 52(9): 1628-1640.
doi: 10.1093/pcp/pcr093 URL |
[118] |
Sonoda Y, Sako K, Maki Y, et al. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit[J]. Plant J, 2009, 60(1): 68-78.
doi: 10.1111/j.1365-313X.2009.03932.x URL |
[119] |
Book AJ, Smalle J, Lee KH, et al. The RPN5 subunit of the 26S proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis[J]. Plant Cell, 2009, 21(2): 460-478.
doi: 10.1105/tpc.108.064444 URL |
[120] |
Smalle J, Kurepa J, Yang PZ, et al. Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12[J]. Plant Cell, 2002, 14(1): 17-32.
pmid: 11826296 |
[121] |
Genschik P. RPN10:a case study for ubiquitin binding proteins and more[J]. Plant Cell, 2019, 31(7): 1398-1399.
doi: 10.1105/tpc.19.00365 |
[122] |
Marshall RS, Li FQ, Gemperline DC, et al. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis[J]. Mol Cell, 2015, 58(6): 1053-1066.
doi: 10.1016/j.molcel.2015.04.023 pmid: 26004230 |
[123] |
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, et al. Completing autophagy:formation and degradation of the autophagic body and metabolite salvage in plants[J]. Int J Mol Sci, 2020, 21(6): 2205.
doi: 10.3390/ijms21062205 URL |
[124] |
Dambacher CM, Worden EJ, Herzik MA, et al. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition[J]. eLife, 2016, 5:e13027.
doi: 10.7554/eLife.13027 URL |
[1] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[4] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[5] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[6] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[7] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[8] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[9] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[10] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[11] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[12] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[13] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[14] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[15] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||