Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (12): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240
• Orginal Article • Next Articles
XIAO Yu-jie1, LI Ze-ming1, YI Peng-fei1, HU Ri-sheng2, ZHANG Xian-wen3, ZHU Lie-shu1
Received:
2018-03-19
Online:
2018-12-26
Published:
2018-12-24
XIAO Yu-jie, LI Ze-ming, YI Peng-fei, HU Ri-sheng, ZHANG Xian-wen, ZHU Lie-shu. Research Progress on Response Mechanism of Transcription Factors Involved in Plant Cold Stress[J]. Biotechnology Bulletin, 2018, 34(12): 1-9.
[1] Chinnusamy V, Zhu J, Zhu JK.Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007, 12(10):444. [2] Zhang X, Fowler SG, Cheng H, et al.Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal, 2004, 39(6):905. [3] Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 2014, 217-218(1):109-119. [4] Tweneboah S, Oh SK.Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops[J]. Journal of Plant Biotechnology, 2017, 44(1):1-11. [5] Riechmann JL, Heard J, Martin G, et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110. [6] Bai B, Wu J, Sheng WT, et al.Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress[J]. International Journal of Molecular Sciences, 2015, 16(5):11398. [7] Zhang ZJ, Huang RF.Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Molecular Biology, 2010, 73(3):241-249. [8] Xu ZS, Chen M, Li LC, et al.Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Bulletin of Botany, 2011, 53(7):570-585. [9] 李瑞梅, 惠杜娟, 刘姣, 等. 植物抗寒转录因子CBF和ICE研究进展[J]. 广东农业科学, 2012, 39(23):132-135. [10] Li XD, Zhuang KY, Liu ZM, et al.Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco[J]. Journal of Plant Physiology, 2016, 204:54-65. [11] Zhuang L, Yuan X, Chen Y, et al.PpCBF3 from cold-tolerant kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana[J]. PLoS One, 2015, 10(7):e0132928. [12] Wang L, Gao J, Qin X, et al.JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress[J]. Molecular Biology Reports, 2015, 42(5):937-945. [13] Morran S, Eini O, Pyvovarenko T, et al.Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal, 2011, 9(2):230. [14] Sobkowiak A, Jończyk M, Adamczyk J, et al.Molecular foundations of chilling-tolerance of modern maize[J]. BMC Genomics, 2016, 17(1):125. [15] Ke YG, Yang ZJ, Yu SW, et al.Characterization of OsDREB6 responsive to osmotic and cold stresses in rice[J]. Journal of Plant Biology, 2016, 42(7):9264-9269. [16] Puranik S, Sahu PP, Srivastava PS, et al.NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [17] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. Genes & Genomes, 2003, 10(6):239. [18] Shao H, Wang H, Tang X.NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science, 2015, 6(902):81. [19] Mao X, Zhang H, Qian X, et al.TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(8):2933-2946. [20] Yoo SY, Kim Y, Kim SY, et al.Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J]. PLoS One, 2007, 2(7):e642. [21] Ma N, Zuo Y, Liang X, et al.The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum, 2013, 149(4):474-486. [22] Fang L, Su L, Sun X, et al.Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. Journal of Experimental Botany, 2016, 67(9):2829-2845. [23] Tripathi P, Rabara RC, Rushton PJ.A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 2014, 239(2):255-266. [24] Zou C, Jiang W, Yu D.Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(14):3901-3914. [25] Zeng T, Kou Y, Liu H, et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14):4863. [26] Kim CY, Vo KTX, Cong DN, et al.Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71[J]. Plant Biotechnology Reports, 2016, 10(1):13-23. [27] Zhang Y, Yu H, Yang X, et al.CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology & Biochemistry, 2016, 108:478-487. [28] Wang Y, Shu Z, Wang W, et al.CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses[J]. Biologia Plantarum, 2016, 60(3):1-9. [29] 李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10):8-15. [30] Zhai H, Bai X, Zhu Y, et al.A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis[J]. Biochemical & Biophysical Research Communications, 2010, 394(4):1018. [31] Pasquali G, Biricolti S, Locatelli F, et al.Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples[J]. Plant Cell Reports, 2008, 27(10):1677. [32] Yang A, Dai X, Zhang WH.A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(7):2541. [33] Meissner M, Orsini E, Ruschhaupt M, et al.Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation[J]. Plant Cell & Environment, 2013, 36(7):1256-1267. [34] Ding Z, Li S, An X, et al.Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. Hereditas, 2009, 36(1):17-29. [35] Baldoni E, Genga A, Cominelli E.Plant MYB transcription factors:their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851. [36] Yang YN, Zhao G, Yue WQ, et al.Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear(Pyrus communis L.)[J]. Tree Genetics & Genomes, 2013, 9(5):1351-1360. [37] Indeok H, Kumar MR, Kang JG, et al.Genome-wide identification and characterization of bZIP transcription factors inbrassica oleraceaunder cold stress[J]. BioMed Research International, 2016, 2016(2016):1-18. [38] 李田, 孙景宽, 刘京涛. 植物转录因子家族在耐盐抗旱调控网络中的作用[J]. 生命科学, 2015, 27(2):217-227. [39] Ma Q, Dai X, Xu Y, et al.Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]. Plant Physiology, 2009, 150(1):244-256. [40] Hossain MA, Jungil C, Han M, et al.The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17):1512. [41] Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169. [42] 曹红利, 岳川, 王新超, 杨亚军. bZIP转录因子与植物抗逆性研究进展[J]. 南方农业学报, 2012, 43(8):1094-1100. [43] Wang L, Cao H, Qian W, et al.Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis[J]. Annals of Botany, 2017, 119(7):1195-1209. [44] Sun XL, Li Y, Cai H, et al.Arabidopsis bZIP1 transcription factor binding to ABRE cis -element regulates abscisic acid signal transduction[J]. Acta Agronomica Sinica, 2011, 37(4):612-619. [45] Liu DC, Qi WU, Wang YC, et al.Cloning and expression analysis of PtrZPT2-2 from trifoliate orange(Poncirus trifoliata)[J]. Acta Horticulturae Sinica, 2014, 41(1):9-16. [46] Kim JC, Lee SH, Cheong YH, et al.A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J, 2001, 25(3):247-259. [47] Yu GH, Jiang LL, Ma XF, et al.A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis[J]. PLoS One, 2014, 9(10):e109399. [48] Ciftci-Yilmaz S, Mittler R.The zinc finger network of plants[J]. Cellular & Molecular Life Sciences, 2008, 65(7/8):1150-1160. [49] Sun SJ, Guo SQ, Yang X, et al.Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice[J]. Journal of Experimental Botany, 2010, 61(10):2807. [50] Doherty CJ, Buskirk HAV, Myers SJ, et al.Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. The Plant Cell, 2009, 21(3):972. [51] Ma Y, Dai X, Xu Y, et al.COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209. [52] Abiri R, Shaharuddin NA, Maziah M, et al.Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions[J]. Environmental & Experimental Botany, 2017, 134:33-44. [53] Shi Y, Tian S, Hou L, et al.Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. The Plant Cell, 2012, 24(6):2578-2595. [54] Niu YJ, Figueroa P, Browse J.Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):2143. [55] Hu Y, Jiang L, Wang F, et al.Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(8):2907-2924. [56] Wu LJ, Chen XL, Ren HY, et al.ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4):. [57] Pil JS, Mi JK, Park JY, et al.Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. The Plant Journal, 2010, 61(4):661-671. [58] Agarwal M, Hao YJ, Kapoor A, et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645 . [59] Cai WT, Yang YL, Wang WW, et al.Overexpression of a wheat(Triticum aestivum L.)bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs[J]. Plant Physiology and Biochemistry, 2018, 124:100-111 . [60] Luo X, Bai X, Zhu D, et al.GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress[J]. Planta, 2012, 235(6):1141-1155 . [61] Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science An International Journal of Experimental Plant Biology, 2014, 217-218(1):109-119. [62] Vysotskii DA, Ij VVL, Souer E, et al.ABF transcription factors of Thellungiella salsuginea:Structure, expression profiles and interaction with 14-3-3 regulatory proteins[J]. Plant Signaling & Behavior, 2013, 8(1):e22672. [63] Ma NN, Zuo YQ, Liang XQ, et al.The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum, 2013, 149(4):474-486. [64] Zou C, Sun K, Mackaluso JD, et al.Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2011, 108(36):14992-14997. [65] Sazegari S, Niazi A, Ahmadi FS.A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes[J]. Bioinformation, 2015, 11(2):101-106. [66] Ha NT, Leipner J, Guerra-Peraza O, et al.Article 3:Characterization of the stress-induced gene ZmCOI6. 1 in maize:Expression and promoter sequences[J]. Tap Chi Sinh Hoc, 2014, 31(3):71-80. [67] Wang Q, Qi W, Wang Y, et al.Isolation and identification of an AP2/ERF factor that binds an allelic cis-element of rice gene LRK6[J]. Genetics Research, 2011, 93(5):319-332. [68] Mishra S, Shukla A, Upadhyay S, et al.Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana[J]. Bulletin of Botany, 2014, 56(4):388-399. [69] Yun KY, Park MR, Mohanty B, et al.Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress[J]. BMC Plant Biology, 2010, 10(1):16. [70] You J, Zhang L, Song B, et al.Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One, 2015, 10(3):e0122027. [71] Lv X, Lan S, Guy KM, et al.Global expressions landscape of NAC transcription factor family and their responses to abiotic stresses in Citrullus lanatus[J]. Scientific Reports, 2016, 6:30574. [72] Peng X, Wu Q, Teng L, et al.Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors[J]. BMC Plant Biology, 2015, 15(1):108. [73] Zou C, Yu D.Analysis of the cold-responsive transcriptome in the mature pollen of Arabidopsis[J]. Journal of Plant Biology, 2010, 53(6):400-416. [74] An D, Yang J, Zhang P.Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress[J]. BMC Genomics, 2012, 13(1):64. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[3] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[4] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[5] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[6] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[7] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[8] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[9] | CHEN Hao-ting, ZHANG Yu-jing, LIU Jie, DAI Ze-min, LIU Wei, SHI Yu, ZHANG Yi, LI Tian-lai. Functional Analysis of WRKY6 Gene in Tomato Under Low-phosphorus Stress [J]. Biotechnology Bulletin, 2023, 39(10): 136-147. |
[10] | YU Xiao-ling, LI Wen-bin, LI Zhi-bo, RUAN Meng-bin. Cold Resistance Function Analysis of Cassava MeMYC2.2 [J]. Biotechnology Bulletin, 2023, 39(1): 224-231. |
[11] | CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing [J]. Biotechnology Bulletin, 2022, 38(7): 40-50. |
[12] | PAN Ying-jie, ZHANG Ying, WU Qi-man, LI Zheng-qing. A Review of WRKY Mediated Regulation of Sugar for Cold Acclimation in Horticultural Crops [J]. Biotechnology Bulletin, 2022, 38(3): 203-212. |
[13] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[14] | YU Jing, YANG Hui, YU Shi-zhou, ZHAO Hui-na, ZHENG Qing-xia, WANG Bing, LEI Bo. Construction of Yeast One-hybrid Bait Vector of Tobacco NtCBT Gene Promoter and Screening of Interacted Proteins [J]. Biotechnology Bulletin, 2022, 38(10): 73-79. |
[15] | LI Qi, WANG Yi-chao, LIU Chang, TAN He-xin. Genome-wide Identification and Bioinformatics Analysis of R2R3-MYB Transcription Factors in Artemisia annua [J]. Biotechnology Bulletin, 2021, 37(8): 65-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||