Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (9): 53-60.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0592
Previous Articles Next Articles
ZHU Chuan-jing, LI Liu-qing, HUANG Jian-hong, TIAN Sen-lin, HU Xue-wei
Received:
2019-07-02
Online:
2019-09-26
Published:
2019-09-16
ZHU Chuan-jing, LI Liu-qing, HUANG Jian-hong, TIAN Sen-lin, HU Xue-wei. Research Progress on Sulfate-reducing Bacteria Using Gas as Electron Donor[J]. Biotechnology Bulletin, 2019, 35(9): 53-60.
[1] 狄军贞, 江富, 戴男男, 等. 硫酸盐还原菌污泥固定化特性[J]. 环境工程学报, 2015, 9(5):2227-2231. [2] 董慧, 张瑞雪, 吴攀, 等. 利用硫酸盐还原菌去除矿山废水中污染物试验研究[J]. 水处理技术, 2012, 38(5):31-35. [3] 吴熙, 胡学伟, 宁平, 等. 基于硫循环的烟气生化脱硫及硫磺回收的过程机理[J]. 中国环境科学, 2019, 39(3):954-959. [4] 谢苹, 张书良, 杨科科. 微氧环境下无色硫细菌和硫酸盐还原菌脱硫[J]. 环境工程学报, 2013, 7(1):306-310. [5] Hao TW, Xiang PY, Mackey HR, et al.A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 2014, 65:1-21. [6] Schmidtova J, Baldwin SA.Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate[J]. Water Research, 2011, 45(3):1115-1128. [7] Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria[M]. New York:The Prokaryotes Springer, 1992, chapter 183:3352-3378. [8] Dupreez LA, Odendaal JP, Maree JP.Biological removal of sulphate from industrial effluents using producer gas as energy source[J]. Environmental Technology, 1992, 13(9):875-882. [9] Van Houten RT, Yun SY, Lettinga G.Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source[J]. Biotechnol Bioeng, 1997, 55(5):807-814. [10] Sousa JAB, Bijmans MFM, Stams AJM, et al.Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community in a bioreactor fed with H2 gas[J]. Environ Sci Technol, 2017, 2:914-923. [11] Sánchez-andrea I, Sanz JL, Bijmans MFM, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269:98-109. [12] Sipma J, Osuna MB, et al.H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization[J]. Appl Microbiol Biotechnol, 2007, 76(2):339-347. [13] Fardeau ML, Bonilla SM, L’haridon S, et al.Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus:reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerob-acter subterraneus gen. nov. sp. nov. comb. nov. as four novel subspecies[J]. International Journal of Systematic and Evolutio-nary Microbiology, 2004, 54(2):467-474. [14] Sokolova TG, González JM, Kostrikina NA, et al.Thermosinus carboxydivorans gen. nov. sp. nov. a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park[J]. Int J Syst Evol Microbiol, 2004, 54(6):2353-2359. [15] Parshina SN, Kijlstra S, Henstra AM, et al.Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans[J]. Appl Microbiol Biotechnol, 2005, 68(3):390-396. [16] Parshina SN, Sipma J, Henstra AM, et al.Carbon monoxide as an electron donor for the biological reduction of sulphate[J]. International Journal of Microbiology, 2010. doi:10.1155/2010/319527. [17] Sipma J, Meulepas RJ, et al.Effect of carbon monoxide, hydrogen and sulfate on thermophilic(55℃)hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges[J]. Appl Microbiol Biotechnol, 2004, 64(3):421. [18] Evans MC, Buchanan BB, Arnon DI.A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium[J]. Proc Natil Acad Sci, 1966, 55(4):928-934. [19] Aoshima M.Novel enzyme reactions related to the tricarboxylic acid cycle:phylogenetic/functional implications and biotechnological applications[J]. Appl Microbiol Biotechnol, 2007, 75(2):249-255. [20] Drake HL, Gössner AS, Daniel SL.Old acetogens, new light[J]. Ann N Y Acad Sci, 2010, 1125(1):100-128. [21] Ljungdahl LG.A life with acetogens, thermophiles, and cellulolytic anaerobes[J]. Annual Review of Microbiology, 2009, 63(1):1-25. [22] 陈颖. 厌氧甲烷氧化微生物代谢分子机制及其潜在参与矿物形成机理的研究[D]. 上海:上海交通大学, 2014. [23] Van Houten RT, Elferink SJ, Hamels EV, et al.Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor[J]. Bioresource Technology, 1995, 54(1):73-79. [24] Lefèvre CT, Howse PA, Schmidt ML, et al.Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium[J]. Environ Microbiol Rep, 2016, 8(6):1003. [25] Chang YJ, Chang YT, Hung CH, et al.Microbial community analysis of anaerobic bio-corrosion in different ORP profiles[J]. Int Biodeter Biodegr, 2014, 95:93-101. [26] Neufeld RD, Ropelewski L, Acheson M.Sewage as a mixed organic substrate for desulfurization bacteria[J]. Proceedings of the Water Environment Federation, 2012(17):265-274. [27] 徐慧纬, 张旭, 杨姗姗, 等. 电场条件下的硫酸盐还原效应及pH/ORP响应[J]. 清华大学学报:自然科学版, 2009, 49(9):1520-1523. [28] Van Houten RT, Van der Spoel H, Van aelst AC, et al. Biological sulfate reduction using synthesis gas as energy and carbon source[J]. Biotechnol Bioeng, 1996, 50(2):136-144. [29] Nevatalo LM, Bijmans MFM, Lens PNL, et al.The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor[J]. Process Biochem, 2010, 45:363-368. [30] Fedorovich V, Greben M, Kalyuzhnyi S, et al.Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors[J]. Biodegradation, 2000, 11(5):295-303. [31] Tang Y, Zhou C, Ginkel SWV, et al. Hydrogen permeability of the hollow fibers used in H2-based membrane biofilm reactors[J]. J Memb Sci, 2012, 407-408(none):176-183. [32] Ontiveros-valencia A, et al. Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm[J]. Environ Sci Technol, 2012, 46(20):11289-11298. [33] Ontiveros-valencia A, Ilhan ZE, Kang DW, et al. Phylogenetic analysis of nitrate- and sulfate-reducing bacteria in a hydrogen-fed biofilm[J]. FEMS Microbiol Ecol, 2013, 85(1):158-167. [34] Ontiveros-valencia A, Tang Y, Kpajmalnik-brown R, et al. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration[J]. Water Research, 2014, 55:215-224. [35] Ontiveros-valencia A, Tang Y, Kpajmalnik-brown R, et al. Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm[J]. Biotechnol Bioeng, 2013, 110(12):3139-3147. [36] 符诗雨, 刘广立, 骆海萍, 等. 微生物电解系统生物阴极的硫酸盐还原特性研究[J]. 环境科学, 2014, 35(2):626-632. [37] Zhou J, Xing J.Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors[J]. Biochem Eng J, 2015, 96:14-22. [38] Bijmans MF, Dopson M, Ennin F, et al.Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor[J]. J Microbiol Biotechnol, 2008, 18(11):1809-1818. [39] Bijmans MF, Dopson M, Peeters TW, et al.Sulfate reduction at pH 5 in a high-rate membrane bioreactor:reactor performance and microbial community analyses[J]. J Microbiol Biotechnol, 2009, 19(7):698-708. [40] Caffrey SM, Voordouw G.Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough[J]. Antonie Van Leeuwenhoek, 2010, 97(1):11-20. [41] Brileya KA, Camilleri LB, et al.Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy[J]. Front Microbiol, 2014, 5:693. [42] Esposito G, Weijma J, Pirozzi F, et al.Effect of the sludge retention time on H2, utilization in a sulphate reducing gas-lift reactor[J]. Process Biochemistry, 2003, 39(4):491-498. [43] Sipma J, Lettinga G, Stama AJM, et al.Hydrogenogenic CO conversion in a moderately thermophilic(55℃)sulfate-fed gas lift reactor:competition for CO-derived H2[J]. Biotechnology Progress, 2010, 22(5):1327-1334. [44] Meulepas RJW, Stams AJM, Lens PNL.Biotechnological aspects of sulfate reduction with methane as electron donor[J]. Reviews in Environmental Science and Bio-Technology, 2010, 9(1):59-78. [45] 任荣, 杨颖, 汪张懿, 等. 硫酸盐对厌氧处理的影响及控制对策[J]. 科技创新与应用, 2015(28):172-173. [46] Muyzer G, Stams AJM.The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat Rev Microbiol, 2008, 6:441-454. [47] Weijma J, Gubbels F, Hulshoff pol LW, et al. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor[J]. Water Sci Technol, 2002, 45(10):75-80. [48] Sipma J, Osuna MB, Lettinga G, et al.Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor[J]. Water Research, 2007, 41(9):1995-2003. [49] Vallero MVG, Lettinga G, Lens PNL.High rate sulfate reduction in a submerged anaerobic membrane bioreactor(SAMBR)at high salinity[J]. J Memb Sci, 2005, 253(1):217-232. [50] Pandelia ME, Ogata H, Currell LJ, et al.Inhibition of the[NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide:an FTIR and EPR spectroscopic study[J]. Biochim Biophys Acta, 2010, 1797(2):304-313. [51] Greco C, Bruschi M, Heimdal J, et al.Structural insights into the active-ready form of[FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide[J]. Inorganic Chemistry, 2007, 46(18):7256-7258. [52] Parshina SN, Sipma J, Nakashimada Y, et al.Desulfotomaculum carboxydiVorans sp. nov. , a novel sulfate reducing bacterium capable of growth at 100% CO[J]. Int J Syst Evol Microbiol, 2005, 55:2159-2165. [53] Sipma J, Lens PN, Stams AJ, et al.Carbon monoxide conversion by anaerobic bioreactor sludges[J]. FEMS Microbiol Ecol, 2003, 44(2):271-277. |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[3] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[4] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[5] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[6] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[7] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[8] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[9] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[10] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[11] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[12] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[13] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[14] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[15] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||