[1] 李恩良, 毛云玲, 周江, 等. 不同基质对长蕊甜菜成苗率的影响[J]. 西部林业科学, 2019, 48:127-132. [2] 李静, 操一凡, 丁佳兴, 等. 含复合菌群生物育苗基质的研制及其育苗效果[J]. 南京农业大学学报, 2018, 41:676-684. [3] 文春燕, 高琦, 张杨, 等. 含PGPR 菌株LZ-8 生物育苗基质的研制与促生效应研究[J]. 土壤, 2016, 48:414-417. [4] 张杨, 王甜甜, 孙玉涵, 等. 西瓜根际促生菌筛选及生物育苗基质研制[J]. 土壤学报, 2017, 54(3):704-714. [5] Siyar S, Inayat N, Hussain F.Plant growth promoting rhizobacteria and plants’ improvement-a mini-review[J]. PSM Biological Research, 2019, 4:1-5. [6] Scola BL, Birtles RJ, Mallet MN, et al.Massilia timonae gen. nov. sp. nov. isolated from blood of an immunocompromised patient with cerebellar lesions[J]. Journal of Clinical Microbiology, 1998, 36(10):2847-2852. [7] Kuffner M, Maria SD, Puschenreiter M, et al.Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability[J]. Journal of Applied Microbiology, 2010, 108(4):1471-1484. [8] Hrynkiewicz K, Baum C, Leinweber P .Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(5):747-756. [9] Weinert N, Meincke R, Gottwald C, et al.Effects of genetically modified potatoes with increased zeaxanthin content on the abundance and diversity of rhizobacteria with in vitro antagonistic activity do not exceed natural variability among cultivars[J]. Plant and Soil, 2010, 326(1-2):437-452. [10] 席娇. 荒漠植物的多功能PGPR 的分离鉴定及其功能特性研究[D]. 呼和浩特:内蒙古农业大学, 2017. [11] 许芳芳. 荒漠植物耐盐碱PGPR 的分离筛选及其对盐胁迫下三种植物的促生效应和机理[D]. 呼和浩特:内蒙古农业大学, 2017. [12] 杨杉杉, 李国光, 张胜男, 等. 假单胞菌BP16的分离鉴定及其植物促生性状和效应[J]. 微生物学通报, 2018, 45(10):2121-2130. [13] 杨鸿儒. 西鄂尔多斯荒漠灌木根际细菌多样性和群落结构的研究[D]. 呼和浩特:内蒙古农业大学, 2016. [14] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796. [15] Penrose DM, Glick BR.Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1):10-15. [16] Mutlu HT, Gökpinar F, Gökpinar E, et al. A new computational approach test for one-way ANOVA under heteroscedasticity[J]. Commun Stati-Theor M, 2016, 46:16, 8236-8256. [17] 王洛彩. 穴盘规格、基质供水状况和生长调节剂对番茄穴盘苗生育的影响[D]. 泰安:山东农业大学, 2006. [18] 葛婷婷, 李萍萍. 不同基质配比对温室黄瓜生长的影响[J]. 安徽农业科学, 2008(1):184-185, 199. [19] 任志雨, 宋艳娜. 秸秆基质的不同配比对黄瓜幼苗生长的影响[J]. 天津农业科学, 2007(4):15-17. [20] 冯福应, 唐凯, 梁允刚, 等. 具促进植物生长功效的可降解育苗钵及其制备方法与应用[P]. 内蒙古:CN107242045A, 2017-10-13. [21] Patten CL, Glick BR.Role of Pseudomonas putida indoleacetic acid in development of the host plant root sstem[J]. Applied and Environmental Microbiology. 2002, 68(8):3795-3801. [22] Vessey JK.Plant growth promoting rhizobacteria as biofertilizers[J]. Plant Soil. 2003, 255:571-586. [23] Kang SM, Joo GJ, Hamayun M.et al.Gibberellin production and phosphate solubilization by new lyisolated strain of Acinetobacter calcoaceticus and its effect on plant growth.[J]. Biotechnol Lett, 2009, 31:277-281. [24] Richardson AE, Barea JM, McNeillb AM, et al. Acquisition of phosphorous nitrogen in the rhizosphere and plant growth promotion by microorganism.[J]. Plant Soil, 2009, 321:305-339. [25] 浩折霞. 功能性复合微生物育苗基质的筛选与应用效果研究[D]. 南京:南京农业大学, 2017. [26] 朱忠彬, 吴秉奇, 丁延芹, 等. 短短芽孢杆菌DZQ3对烟草的促生及系统抗性诱导作用[J]. 中国烟草科学, 2012, 33(3):92-96, 106. [27] 岳东霞, 张要武. 番茄根际促生菌—假单胞菌的生防作用[J]. 华北农学报, 2009, 24(5):210-213. [28] 王娟, 刘东平, 丁方丽, 等. 促植物生长根际细菌HG28-5对黄瓜苗期生长及根际土壤微生态的影响[J]. 中国蔬菜, 2016(8):50-55. [29] 粱建根, 张炳欣, 喻景权, 等. 植物根围促生细菌(PGPR)对黄瓜生长及生理生化特性的影响[J]. 浙江大学学报:农业与生命科学版, 2007, 33(2):202-206. [30] Vacheron J, Desbrosses G, Bouffaud ML, et al.Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science, 2013, 4:356 [31] 韩文星, 姚拓, 梁启鹏, 等. PGPR菌肥对燕麦根系性状影响的研究[J]. 草原与草坪, 2008(4):1-4. [32] 席琳乔, 姚拓, 杨俊基, 等. 联合固氮菌株分泌能力及其对燕麦的促生效应测定[J]. 草原与草坪, 2005(4):25-29. |