Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 86-97.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0144
Previous Articles Next Articles
TANG Jia-cheng1(), LIANG Yi-min1, MA Jia-si1, PENG Gui-xiang2, TAN Zhi-yuan1
Received:
2021-02-04
Online:
2022-01-26
Published:
2022-02-22
TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims[J]. Biotechnology Bulletin, 2022, 38(1): 86-97.
类群 Group | 代表菌株(GenBank登录号) Representative strain(GenBank accession number) | 最相似菌株名称(GenBank登录号) Closely related strain(GenBank accession number) | 相似性 Similarity/% |
---|---|---|---|
Ⅰ | BXG95(MW714902) | Bacillus altitudinis 41KF2bT(NR_042337) | 98.20 |
Ⅱ | BXG129(MW714912) | Bacillus circulans strain NBRC 13626T(NR_112632) | 97.99 |
Ⅲ | BXG111(MW714903) | Lysinibacillus macroides strain LMG 18474T(NR_114920) | 98.42 |
Ⅳ | BXG92(MW714901) | Brevibacillus antibioticus strain TGS2-1T(NR_165725) | 98.70 |
Ⅴ | BXY92(MW714907) | Paenibacillus illinoisensis strain NBRC 15959T(NR_113828) | 97.49 |
Ⅵ | BXJ201(MW714905) | Microbacterium zeae strain 1204T(NR_149816) | 97.61 |
Ⅶ | BXG81(MW714904) | Rhizobium pusense strain NRCPB10T(NR_116874) | 99.00 |
Ⅷ | BXG212(MW714911) | Beijerinckia fluminensis strain UQM 1685T(NR_116306) | 98.57 |
Ⅸ | BXG101(MW714910) | Achromobacter mucicolens strain R-46658T(NR_117613) | 98.13 |
Ⅹ | BXG201(MW714909) | Stenotrophomonas maltophilia strain ATCC 19861T(NR_040804) | 98.29 |
Ⅺ | BXJ71(MW714906) | Klebsiella michiganensis strain W14T(NR_118335) | 97.13 |
Ⅻ | BXG53(MW714908) | Klebsiella pneumoniae strain DSM 30104T(NR_117683) | 98.62 |
Table 2 Comparison results of 16S rRNA gene sequence similarity of representative strains of various groups of P. edulia Sims
类群 Group | 代表菌株(GenBank登录号) Representative strain(GenBank accession number) | 最相似菌株名称(GenBank登录号) Closely related strain(GenBank accession number) | 相似性 Similarity/% |
---|---|---|---|
Ⅰ | BXG95(MW714902) | Bacillus altitudinis 41KF2bT(NR_042337) | 98.20 |
Ⅱ | BXG129(MW714912) | Bacillus circulans strain NBRC 13626T(NR_112632) | 97.99 |
Ⅲ | BXG111(MW714903) | Lysinibacillus macroides strain LMG 18474T(NR_114920) | 98.42 |
Ⅳ | BXG92(MW714901) | Brevibacillus antibioticus strain TGS2-1T(NR_165725) | 98.70 |
Ⅴ | BXY92(MW714907) | Paenibacillus illinoisensis strain NBRC 15959T(NR_113828) | 97.49 |
Ⅵ | BXJ201(MW714905) | Microbacterium zeae strain 1204T(NR_149816) | 97.61 |
Ⅶ | BXG81(MW714904) | Rhizobium pusense strain NRCPB10T(NR_116874) | 99.00 |
Ⅷ | BXG212(MW714911) | Beijerinckia fluminensis strain UQM 1685T(NR_116306) | 98.57 |
Ⅸ | BXG101(MW714910) | Achromobacter mucicolens strain R-46658T(NR_117613) | 98.13 |
Ⅹ | BXG201(MW714909) | Stenotrophomonas maltophilia strain ATCC 19861T(NR_040804) | 98.29 |
Ⅺ | BXJ71(MW714906) | Klebsiella michiganensis strain W14T(NR_118335) | 97.13 |
Ⅻ | BXG53(MW714908) | Klebsiella pneumoniae strain DSM 30104T(NR_117683) | 98.62 |
Fig.3 Phylogenetic dendrogram of 16S rRNA gene sequences for representative strains(Neighbor-joining method) The number of random sampling calculations is 1 000,the numbers at nodes are bootstrap values(%),and the bar is 2% in nucleotide substitution
特性 Property | BXG95 | BXG129 | BXG111 | BXG92 | BXY92 | BXJ201 | BXG81 | BXG212 | BXG101 | BXG201 | BXJ71 | BXG53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
革兰氏染色 Gram stain | + | + | - | + | + | + | - | - | - | - | - | - |
过氧化氢酶 Catalase | + | + | + | + | + | + | + | + | + | + | + | + |
甲基红 Methyl red | + | + | - | + | + | + | + | + | - | - | - | + |
产氨 Ammonia production | - | + | - | + | - | + | + | + | + | + | + | + |
脲酶 Urease | - | + | - | - | - | + | + | + | + | + | - | + |
乙酰甲基甲醇实验 V.P. test | - | - | + | - | - | - | - | - | + | + | + | - |
NO3-还原测定 Nitrate reduction | - | + | - | + | - | - | + | - | + | + | + | + |
明胶液化 Gelatin hydrolysis | + | + | - | - | + | - | - | - | - | + | + | - |
固氮酶活性 Nitrogenase activity /(nmol C2H4/(mL·h)) | 0 | 0 | 0 | 0 | 0 | 0 | 23.97±0.43 | 100.94±0.89 | 0 | 21.11±0.66 | 477.93±3.85 | 191.33±1.27 |
Table 3 Physiological and biochemical properties of the representative strains
特性 Property | BXG95 | BXG129 | BXG111 | BXG92 | BXY92 | BXJ201 | BXG81 | BXG212 | BXG101 | BXG201 | BXJ71 | BXG53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
革兰氏染色 Gram stain | + | + | - | + | + | + | - | - | - | - | - | - |
过氧化氢酶 Catalase | + | + | + | + | + | + | + | + | + | + | + | + |
甲基红 Methyl red | + | + | - | + | + | + | + | + | - | - | - | + |
产氨 Ammonia production | - | + | - | + | - | + | + | + | + | + | + | + |
脲酶 Urease | - | + | - | - | - | + | + | + | + | + | - | + |
乙酰甲基甲醇实验 V.P. test | - | - | + | - | - | - | - | - | + | + | + | - |
NO3-还原测定 Nitrate reduction | - | + | - | + | - | - | + | - | + | + | + | + |
明胶液化 Gelatin hydrolysis | + | + | - | - | + | - | - | - | - | + | + | - |
固氮酶活性 Nitrogenase activity /(nmol C2H4/(mL·h)) | 0 | 0 | 0 | 0 | 0 | 0 | 23.97±0.43 | 100.94±0.89 | 0 | 21.11±0.66 | 477.93±3.85 | 191.33±1.27 |
特性Characteristics | BXG95 | BXG129 | BXG111 | BXG92 | BXY92 | BXJ201 | BXG81 | BXG212 | BXG101 | BXG201 | BXJ71 | BXG53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
可溶性磷含量 Soluble P content/(mg·L-1) | - | - | 9.75 | - | 12.46 | - | - | 12.93 | 13.64 | - | 12.38 | 23.47 |
可溶性钾含量 Soluble K content/(mg·L-1) | - | 22.4 | - | - | 45.2 | 42.7 | 29 | 23.6 | - | - | 41 | 65.6 |
生长素 IAA/(mg·L-1) | 24.32 | 28.71 | - | 3.36 | 12.38 | - | 7.55 | 8.91 | 20.97 | 11.46 | 14.85 | 17.13 |
产铁载体 Siderophore production | - | - | - | - | - | - | + | - | - | - | + | + |
产蛋白酶 Proteinase production | 3.61 | 1.97 | - | - | 2.68 | - | - | - | - | 3.60 | 2.36 | - |
Table 4 Growth-promoting characteristics of representative strains
特性Characteristics | BXG95 | BXG129 | BXG111 | BXG92 | BXY92 | BXJ201 | BXG81 | BXG212 | BXG101 | BXG201 | BXJ71 | BXG53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
可溶性磷含量 Soluble P content/(mg·L-1) | - | - | 9.75 | - | 12.46 | - | - | 12.93 | 13.64 | - | 12.38 | 23.47 |
可溶性钾含量 Soluble K content/(mg·L-1) | - | 22.4 | - | - | 45.2 | 42.7 | 29 | 23.6 | - | - | 41 | 65.6 |
生长素 IAA/(mg·L-1) | 24.32 | 28.71 | - | 3.36 | 12.38 | - | 7.55 | 8.91 | 20.97 | 11.46 | 14.85 | 17.13 |
产铁载体 Siderophore production | - | - | - | - | - | - | + | - | - | - | + | + |
产蛋白酶 Proteinase production | 3.61 | 1.97 | - | - | 2.68 | - | - | - | - | 3.60 | 2.36 | - |
Fig.5 Growth-promoting characteristics of some repres-entative strains A:Siderophore production test chart. B:Soluble P test chart. C:Soluble K test chart. D:Protease production test chart
[1] |
Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops[J]. Can J Microbiol, 1997, 43(10):895-914.
doi: 10.1139/m97-131 URL |
[2] | 黄敬瑜, 张楚军, 姚瑜龙, 等. 植物内生菌生物抗菌活性物质研究进展[J]. 生物工程学报, 2017, 33(2):178-186. |
Huang JY, Zhang CJ, Yao YL, et al. Progress in antimicrobial substances of endophytes[J]. Chin J Biotechnol, 2017, 33(2):178-186. | |
[3] |
Hanada RE, Pomella AWV, Costa HS, et al. Endophytic fungal diversity in Theobroma cacao(cacao)and T. grandiflorum(cupuaçu)trees and their potential for growth promotion and biocontrol of black-pod disease[J]. Fungal Biol, 2010, 114(11/12):901-910.
doi: 10.1016/j.funbio.2010.08.006 URL |
[4] |
Singh M, Kumar A, Singh R, et al. Endophytic bacteria:a new source of bioactive compounds[J]. 3 Biotech, 2017, 7(5):315.
doi: 10.1007/s13205-017-0942-z URL |
[5] | 阳洁, 秦莹溪, 王晓甜, 等. 广西药用野生稻内生细菌多样性及促生作用[J]. 生态学杂志, 2015, 34(11):3094-3100. |
Yang J, Qin YX, Wang XT, et al. Diversity and growth promotion of endophytic bacteria isolated from Oryza officinalis in Guangxi[J]. Chin J Ecol, 2015, 34(11):3094-3100. | |
[6] | 刘丽辉, 蒋慧敏, 区宇程, 等. 南方野生稻内生细菌的分离鉴定及促生作用[J]. 应用与环境生物学报, 2020, 26(5):1051-1058. |
Liu LH, Jiang HM, Ou YC, et al. Identification and growth promotion of endophytic bacteria isolated from Oryza meridionalis[J]. Chin J Appl Environ Biol, 2020, 26(5):1051-1058. | |
[7] | 谭志远, 彭桂香, 徐培智, 等. 普通野生稻(Oryza rufipogon)内生固氮菌多样性及高固氮酶活性[J]. 科学通报, 2009, 54(13):1885-1893. |
Tan ZY, Peng GX, Xu PZ, et al. Diversity of Endophytic Nitrogen-fixing Bacteria and High Nitrogenase Activity in Oryza rufipogon[J]. Chin Sci Bull, 2009, 54(13):1885-1893. | |
[8] | 彭桂香, 王华荣, 张国霞, 等. 糖蜜草内生固氮菌IS-PCR和16S rRNA基因全序列分析[J]. 华南农业大学学报, 2005, 26(4):73-76. |
Peng GX, Wang HR, Zhang GX, et al. Molecular study of endophytic nitrogen fixing bacteria isolated from Melinis minutiflora[J]. J South China Agric Univ, 2005, 26(4):73-76. | |
[9] | 原红娟, 严慧, 杨芳, 等. 澳洲野生稻(Oryza australiensis)内生固氮菌的分子鉴定及发育分析[J]. 应用与环境生物学报, 2014, 20(4):571-577. |
Yuan HJ, Yan H, Yang F, et al. Molecular characterization and phylogenetic analysis of endophytic nitrogenfixing bacteria in Oryza australiensis[J]. Chin J Appl Environ Biol, 2014, 20(4):571-577. | |
[10] | 周德庆, 徐德强, 胡宝龙. 微生物学实验教程[M].3版. 北京: 高等教育出版社, 2013. |
Zhou DQ, Xu DQ, Hu BL. Experimental microbiology[M]. Beijing: Higher Education Press, 2013. | |
[11] |
Zehr JP, Mellon MT, Zani S. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase(nifH)genes[J]. Appl Environ Microbiol, 1998, 64(12):5067.
doi: 10.1128/AEM.64.12.5067-5067.1998 URL |
[12] | 赵龙飞, 徐亚军, 曹冬建, 等. 溶磷性大豆根瘤内生菌的筛选、抗性及系统发育和促生[J]. 生态学报, 2015, 35(13):4425-4435. |
Zhao LF, Xu YJ, Cao DJ, et al. Screening, resistance, phylogeny and growth promoting of phosphorus solubilizing bacteria isolated from soybean root nodules[J]. Acta Ecol Sin, 2015, 35(13):4425-4435. | |
[13] | 冉广芬, 马海州, 孟瑞英, 等. 四苯硼钠—季铵盐容量法快速测钾[J]. 盐湖研究, 2009, 17(2):39-42. |
Ran GF, Ma HZ, Meng RY, et al. Rapid determination of potassium content by sodium tetraphenylboron-quaternary ammonium salt volumetric method[J]. J Salt Lake Res, 2009, 17(2):39-42. | |
[14] | Ripa FA, Cao WD, Tong S, et al. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi[J]. Biomed Res Int, 2019, 2019:6105865. |
[15] |
Beckers B, Op De Beeck M, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1):25.
doi: 10.1186/s40168-017-0241-2 pmid: 28231859 |
[16] |
Shivaji S, Chaturvedi P, Suresh K, et al. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes[J]. Int J Syst Evol Microbiol, 2006, 56(7):1465-1473.
doi: 10.1099/ijs.0.64029-0 URL |
[17] |
Baliyan N, Dhiman S, Dheeman S, et al. Optimization of indole-3-acetic acid using response surface methodology and its effect on vegetative growth of chickpea[J]. Rhizosphere, 2021, 17:100321.
doi: 10.1016/j.rhisph.2021.100321 URL |
[18] |
Shida O, Takagi H, Kadowaki K, et al. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov[J]. Int J Syst Bacteriol, 1997, 47(2):299-306.
pmid: 9103613 |
[19] |
Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli(Ash, Farrow, Wallbanks and Collins)using a PCR probe test[J]. Antonie Van Leeuwenhoek, 1993, 64(3/4):253-260.
doi: 10.1007/BF00873085 URL |
[20] |
Liu D, Yang Q, Ge K, et al. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil[J]. Braz J Microbiol, 2017, 48(4):656-670.
doi: S1517-8382(16)30635-9 pmid: 28645648 |
[21] |
Panday D, Schumann P, Das SK. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea(Cicer arietinum L.)[J]. Int J Syst Evol Microbiol, 2011, 61(Pt 11):2632-2639.
doi: 10.1099/ijs.0.028407-0 URL |
[22] |
Soberón-Chávez G, Nájera R. Isolation from soil of Rhizobium leguminosarum lacking symbiotic information[J]. Can J Microbiol, 1989, 35(4):464-468.
doi: 10.1139/m89-071 URL |
[23] |
Quigley PE, Cunningham PJ, Hannah M, et al. Symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii collected from pastures in south-western Victoria[J]. Aust J Exp Agric, 1997, 37(6):623.
doi: 10.1071/EA96089 URL |
[24] |
Segovia L, Piñero D, Palacios R, et al. Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum[J]. Appl Environ Microbiol, 1991, 57(2):426-433.
doi: 10.1128/aem.57.2.426-433.1991 URL |
[25] | Yanni YG, Rizk RY, Corich V, et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth[M]// Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Dordrecht:Springer Netherlands, 1997:99-114. |
[26] |
Rosenblueth M, Martínez-Romero E. Rhizobium etli maize populations and their competitiveness for root colonization[J]. Arch Microbiol, 2004, 181(5):337-344.
pmid: 15024554 |
[27] | 李艳梅, 王琼瑶, 涂卫国, 等. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报, 2017, 44(8):1882-1890. |
Li YM, Wang QY, Tu WG, et al. Growth promoting activity of siderophore secreting bacteria for peanut plant under nickel stress[J]. Microbiol China, 2017, 44(8):1882-1890. | |
[28] | 杨鸿儒, 袁博, 赵霞, 等. 三种荒漠灌木根际可培养固氮细菌类群及其固氮和产铁载体能力[J]. 微生物学通报, 2016, 43(11):2366-2373. |
Yang HR, Yuan B, Zhao X, et al. Cultivable diazotrophic community in the rhizosphere of three desert shrubs and their nitrogen-fixation and siderophore-producing capabilities[J]. Microbiol China, 2016, 43(11):2366-2373. | |
[29] | 毛得奖, 朱亚玲, 韩宁. 假单胞菌铁载体及色素研究[J]. 微生物学通报, 2013, 40(3):500-516. |
Mao DJ, Zhu YL, Han N. Siderophores and pigments produced by Pseudomonas bacteria[J]. Microbiol China, 2013, 40(3):500-516. | |
[30] |
Oggerin M, Arahal DR, Rubio V, et al. Identification of Beijerinckia fluminensis strains CIP 106281T and UQM 1685T as Rhizobium radiobacter strains, and proposal of Beijerinckia doebereinerae sp. nov. to accommodate Beijerinckia fluminensis LMG 2819[J]. INTERNATIONAL J SYSTEMATIC EVOLUTIONARY MICROBIOLOGY, 2009, 59(9):2323-2328.
doi: 10.1099/ijs.0.006593-0 URL |
[31] | Ramanuj K, Shelat H. Plant growth promoting potential of bacterial endophytes from medicinal plants[J]. Adv Res, 2018, 13(6):1-15. |
[32] |
Saha R, Farrance CE, Verghese B, et al. Klebsiella michiganensis sp. nov., A New Bacterium Isolated from a Tooth Brush Holder[J]. Curr Microbiol, 2013, 66(1):72-78.
doi: 10.1007/s00284-012-0245-x URL |
[33] |
Palus JA, Borneman J, Ludden PW, et al. A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley[J]. Plant Soil, 1996, 186(1):135-142.
doi: 10.1007/BF00035067 URL |
[34] | 谭泽文, 谭志远, 黄慧灵, 等. 梧县药用野生稻内生固氮菌分离鉴定与系统发育分析[J]. 应用与环境生物学报, 2017, 23(4):622-627. |
Tan ZW, Tan ZY, Huang HL, et al. Isolation and phylogenetic analysis of endophytic nitrogen-fixing bacteria from Oryza officinalis in Wuxian[J]. Chin J Appl Environ Biol, 2017, 23(4):622-627. | |
[35] | 谭志远, 傅琴梅, 彭桂香, 等. 青香茅和五节芒内生固氮菌的分离与生理生化鉴定[J]. 应用与环境生物学报, 2013, 19(4):643-649. |
Tan ZY, Fu QM, Peng GX, et al. Identification and characterization of endophytic diazotrophs isolated from Cymbopogon caesius and Miscanthus floridulus[J]. Chin J Appl Environ Biol, 2013, 19(4):643-649. | |
[36] | 付思远, 席雨晴, 赵鹏菲, 等. 泓森槐可培养内生固氮细菌多样性与潜在促生长特性评价[J]. 微生物学通报, 2020, 47(8):2458-2470. |
Fu SY, Xi YQ, Zhao PF, et al. Evaluating diversity and potential growth promoting characteristics of the culturable endophytic diazotrophic bacteria isolated from Robinia pseudoacacia ‘Hongsen’[J]. Microbiol China, 2020, 47(8):2458-2470. | |
[37] | 龚凤娟, 恩特马克·布拉提白, 张宇凤, 等. 具有ACC脱氨酶活性的杜仲内生细菌的分离鉴定及其抗菌活性[J]. 微生物学通报, 2011, 38(10):1526-1532. |
Gong FJ, Borrathybay Entomack, Zhang YF, et al. Isolation and antibacterial activity of ACC deaminase-containing endophytic bacteria from Eucommia ulmoides Oliver[J]. Microbiol China, 2011, 38(10):1526-1532. |
[1] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[2] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[3] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[4] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[5] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[6] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[7] | WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(4): 242-252. |
[8] | DU Jia-hui, XU Wei-fang, YANG Xiao-dong, TAN Song, YIN Deng-ke, LIU Yuan-xu. Isolation and Screening of Endophytes Producing Indole Acetic Acid from Polygonatum cyrtonema Hua. and Its Effect on Seed Germination of Polygonatum [J]. Biotechnology Bulletin, 2022, 38(12): 223-232. |
[9] | WANG Zhi-shan, LI Ni, WANG Wei-ping, LIU Yang. Research Progress in Endophytic Bacteria in Rice Seeds [J]. Biotechnology Bulletin, 2022, 38(1): 236-246. |
[10] | ZHU Hai-yun, MA Yu, KE Yang, LI Bo. Screening and Identification of an Antagonist Against the Pathogen of Kiwifruit Canker and Its Antifungal Activity to the Phytopathogenic Fungus [J]. Biotechnology Bulletin, 2021, 37(6): 66-72. |
[11] | ZHOU Jing, HUANG Wen-mao, QIN Li-jun, HAN Li-zhen. Construction of Mixed Fermentation System of Four PGPR Strains and Evaluation of Its Promoting Effect [J]. Biotechnology Bulletin, 2021, 37(4): 116-126. |
[12] | LEI Hai-ying, ZHAO Qing-song, YANG Xiao, WANG Mao-mao, BAI Jie, SUN Yong-qi, WANG Zhi-jun. Isolation of Efficient Nitrogen-fixing Bacteria from the Rhizosphere of Sophora flavescens and the Growth-promoting Effect of Compound Microbial Fertilizer on Seedlings [J]. Biotechnology Bulletin, 2020, 36(9): 157-166. |
[13] | QIAN Ting, YE Jian-ren. The Mechanism of Dissolving Inorganic Phosphorus by Bacillus megaterium ZS-3 and Its Growth Promotion of Cinnamomum camphora [J]. Biotechnology Bulletin, 2020, 36(8): 45-52. |
[14] | JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils [J]. Biotechnology Bulletin, 2020, 36(6): 73-82. |
[15] | GUO Xiao-ping, LIU Xing-fei, LI Xiao-nan, LÜ Xue-ru, XI Shao-mei, TIAN Yuan. Study on Antifungal Activity of an Endophytic Bacterium of Polygonatum sibiricum Delar. ex Redoute [J]. Biotechnology Bulletin, 2020, 36(11): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||