Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 126-134.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738
Previous Articles Next Articles
GAO Guo-ying1,2, WU Xiao-fang1,2, ZHANG Da-wei1, ZHOU Ding-gang1, ZHANG Kai-xuan1,2, YAN Ming-li1
Received:
2019-08-19
Online:
2020-01-26
Published:
2020-01-08
GAO Guo-ying, WU Xiao-fang, ZHANG Da-wei, ZHOU Ding-gang, ZHANG Kai-xuan, YAN Ming-li. Research Progress on the MBW Complexes in Plant Anthocyanin Biosynthesis Pathway[J]. Biotechnology Bulletin, 2020, 36(1): 126-134.
[1] Wei Q, Zhang F, Sun F, et al.A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants[J]. Plant Sci, 2017, 265:112-123. [2] Wang N, Qu C, Jiang S, et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J]. Plant J, 2018, 96:39-55. [3] Kim J, Lee WJ, Vu TT, et al.High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.[J]. Plant Cell Rep, 2017, 6:1-10. [4] Bai S, Tao R, Tang Y, et al.BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnol J, 2019, 17(10):1985-1997. [5] Nguyen CT, Lim S, Lee JG, et al.VcBBx, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit[J]. J Agric Food Chem, 2017, 65(10):2066-2073. [6] Qi T, Song S, Ren Q, et al.The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(5):1795-1814. [7] Xu W, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20(3):176-185. [8] Li P, Li YJ, Zhang FJ, et al.The Arabidopsis UDP-glycosyltransfe-rases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal, 2016, 89:85-103. [9] Zohar BS, Sylvie J, Taly T,et al. A “white” anthocyanin-less pomegranate(Punica granatum L.)caused by an insertion in the coding region of the leucoanthocyanidin dioxygenase(LDOX;ANS)gene[J]. PLoS One,2015, 10(11):e0142777-. [10] Tan L, Wang M, Kang Y, et al.Biochemical and functional characterization of anthocyanidin reductase(ANR)from Mangifera indica L.[J]. Molecules, 2018, 23(11):2876. [11] Wang Y, Dou Y, et al.Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the fla-vonoid biosynthetic pathway[J]. Gene, 2017, 635(7):16-23. [12] Feng K, Xu ZS, Que F, et al.An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica[J]. Planta, 2017, 247:301-315. [13] Wang H, Wang X, Song W, et al.PdMYB118, isolated from a red leaf mutant of Populus deltoids, is a new transcription factor regulating anthocyanin biosynthesis in poplar[J]. Plant Cell Rep, 2019, 38:927-936. [14] Li P, Chen B, et al.Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytol, 2016, 210(3):905-921. [15] Gonzalez A, Zhao M, Leavitt JM, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53(5):814-827. [16] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581. [17] Liu J, Osbourn A, Ma P.MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5):689-708. [18] Seo MS, Kim JS.Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae[J]. Molecules, 2017, 22(9):1549. [19] Gao F, Zhou J, Deng RY, et al.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. J Plant Physiol, 2017, 214:81-90. [20] Paz-Ares J, Ghosal D, Wienand U, et al.The regulatory c1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators[J]. EMBO J, 1987, 6(12):3553-3558. [21] Hernandez JM, Heine GF, Irani NG, et al.Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1[J]. J Biol Chem, 2004, 279(46):48205-48213. [22] Nesi N, Jond C, Debeaujon I, et al.The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell, 2001, 13(9):2099-2114. [23] Mehrtens F, Kranz H, et al.The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol, 2005, 138(2):1083-1096. [24] Bai YC, Li CL, et al.Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis[J]. Physiol Plant, 2014, 152(3):431-440. [25] Luo X, Zhao H, Yao P, et al.An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from tartary buckwheat[J]. J Plant Growth Regul, 2017, 37(1):1-9. [26] Gesell A, Yoshida K, Tran LT, et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J]. Planta, 2014, 240(3):497-511. [27] Wang N, Xu H, Jiang S, et al.MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J]. Plant J, 2017, 90(2):276-292. [28] Matus JT, Cavallini E, Loyola R, et al.A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared to the berry color locus[J]. Plant J, 2017, 91:220-236. [29] Xu ZS, Feng K, Que F, et al.A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots[J]. Sci Rep, 2017, 7:45324. [30] Xu ZS, Yang QQ, Feng K, et al. Changing carrot color:insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification[J]. Plant Physiol, 2019, http://www.plantphysiol. org/content/early/2019/06/18/pp. 19. 00523. [31] Shin DH, Choi MG, Kang CS, et al.A wheat R2R3-MYB protein PURPLE PLANT1(TaPL1)functions as a positive regulator of anthocyanin biosynthesis[J]. Biochem Biophys Res Commun, 2016, 469(3):686-691. [32] Ma D, Reichelt M, Yoshida K, et al.Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar[J]. Plant J, 2018, 96:949-965. [33] Zhou H, Wang KL, Wang F, et al.Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. New Phytol, 2019, 221:1919-1934. [34] Feller A, Yuan L, Grotewold E.The BIF domain in plant bHLH proteins is an ACT-Like domain[J]. Plant Cell, 2017, 8(29):1800-1802. [35] Chandler VL, Radicella JP, Robbins TP, et al.Two regulatory genes of the maize anthocyanin pathway are homologous:isolation of B utilizing R genomic sequences[J]. Plant Cell, 1989, 1(12):1175-1183. [36] Zhou LL, Shi MZ, Xie DY.Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana[J]. Planta, 2012, 236(3):825-837. [37] Xu W, Grain D, Gourrierec JL, et al.Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis[J]. New Phytol, 2013, 198(1):59-70. [38] Gao C, Guo Y, Wang J, et al.Brassica napus GLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biol, 2018, 20(1):3-9. [39] Li J, Ren L, Gao Z, et al.Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant(Solanum melongena L.)[J]. Plant Cell Environ, 2017, 40:3069-3087. [40] Qiu Z, Wang X, Gao J, et al.The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One, 2016, 11(3):e0151067. [41] Wang L, Tang W, Hu Y, et al.A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. Plant J, 2019, 99:359-378. [42] Li C, Qiu J, Ding L, et al.Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant Physiol Biochem, 2017, 112:335-345. [43] An JP, Li HH, Song LQ, et al.The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple[J]. Plant Physiol Biochem, 2016, 108:24-31. [44] Smith TF, et al.The WD repeat:a common architecture for diverse functions[J]. Trends Biochem Sci, 1999, 24(5):181-185. [45] Vetten N, et al.The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, pla-nts, and animals[J]. Genes Dev, 1997, 11(11):1422-1434. [46] Walker AR, Davison PA, et al.The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein[J]. Plant Cell, 1999, 11(7):1337-1350. [47] Humphries JA, Walker AR, Timmis JN, et al.Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1(TTG1)gene[J]. Plant Mol Biol, 2005, 57(1):67-81. [48] Li W, Wang B, Wang M, et al.Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation[J]. J Integr Plant Biol, 2014, 56(4):364-372. [49] An XH, Tian Y, Chen KQ, et al.The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. J Plant Physiol, 2012, 169(7):710-717. [50] Liu X, Feng C, Zhang M, et al.The MrWD40-1 gene of Chinese bayberry(Myrica rubra)interacts with MYB and bHLH to enhance anthocyanin accumulation[J]. Plant Molecular Biology Reporter, 2013, 31(6):1474-1484. [51] Zhao M, Li J, Zhu L, et al.Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes, 2019, 10:E496. [52] Lloyd A, Brockman A, Aguirre L, et al.Advances in the MYB-bHLH-WD repeat(MBW)pigment regulatory model:addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant Cell Physiol, 2017, 58(9):1431-1441. [53] Xu W, et al.Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed[J]. New Phytol, 2014, 202(1):132-144. [54] Carey CC, Strahle JT, Selinger DA, et al.Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell, 2004, 16:450-464. [55] Falcone, et al. Cloning and characterization of a UV-B-inducible maize flavonol synthase[J]. Plant J, 2010, 62(1):77-91. [56] Strygina KV, Börner A, et al.Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone[J]. BMC Plant Biol, 2017, 17(S1):184. [57] Spelt C, et al.Anthocyanin1 of petunia encodes a basic Helix-Loop-Helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12(9):1619-1632. [58] Albert NW, Davies KM, et al.A conserved network of transcrip-tional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. Plant Cell, 2014, 26(9):962-980. [59] Schaart JG, Dubos C, Fuente IRDL, et al.Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry(fragaria× ananassa)fruits[J]. New Phytol, 2013, 197(2):454-467. [60] Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, et al.A pomegranate(Punica granatum L.)WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta, 2011, 234(5):865-881. [61] Lim SH, Kim DH, Kim JK, et al.A radish basic Helix-Loop-Helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis[J]. Front Plant Sci, 2017, 8:1917. [62] Liu XF, Yin XR, Allan AC, et al.The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry(Myrica rubra)during anthocyanin biosynthesis[J]. Plant Cell Tiss Org, 2013, 115(3):285-298. [63] Lai B, Du LN, Liu R, et al.Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Front Plant Sci, 2016, 7:166. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[3] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[7] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[8] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[9] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[10] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[11] | SUN Wei, ZHANG Yan, WANG Yu-han, XU Hui, XU Xiao-rong, JU Zhi-gang. Cloning of Rd3GT1 in Rhododendron delavayi and Its Effect on Flower Color Formation of Petunia hybrida [J]. Biotechnology Bulletin, 2022, 38(9): 198-206. |
[12] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[13] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[14] | FENG Jian-ying, LI Li-qin, LU Li-ming. Genome-wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Solanum tuberosum [J]. Biotechnology Bulletin, 2022, 38(2): 21-33. |
[15] | ZOU Liang-ping, GUO Xin, QI Deng-feng, ZHAI Min, LI Zhuang, ZHAO Ping-juan, PENG Ming, NIU Xing-kui. Anthocyanin Accumulation and Its Gene Expression Induced by Low Nitrogen Stress in Cassava Seedlings [J]. Biotechnology Bulletin, 2022, 38(2): 75-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||