[1] Liu EY, Cali CP, Lee EB.RNA metabolism in neurodegenerative disease[J]. Dis Model Mech, 2017, 10(5):509-518.
[2] Knott GJ, Doudna JA.CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405):866-869.
[3] Wang F, Wang L, Zou X, et al.Advances in CRISPR-Cas systems for RNA targeting, tracking and editing[J]. Biotechnol Adv, 2019, 37(5):708-729.
[4] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573.
[5] East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273.
[6] Konermann S, Lotfy P, Brideau NJ, et al.Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3):665-676.
[7] Zhang B, Ye Y, Ye W, et al.Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d[J]. Nat Commun, 2019, 10(1):2544.
[8] Liu L, Li X, Wang J, et al.Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 2017, 168(1-2):121-134.
[9] Liu L, Li X, Ma J, et al.The Molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4):714-726.
[10] Shmakov S, Smargon A, Scott D, et al.Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nat Rev Microbiol, 2017, 15(3):169-182.
[11] Smargon AA, Cox DBT, Pyzocha NK, et al.Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4):618-630.
[12] Yan WX, Chong S, Zhang H, et al.Cas13d Is a Compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70(2):327-339.
[13] East-Seletsky A, O’Connell MR, Burstein D, et al. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes[J]. Mol Cell, 2017, 66(3):373-383.
[14] McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition[J]. Nat Rev Microbiol, 2019, 17(1):7-12.
[15] Knott GJ, East-Seletsky A, Cofsky JC, et al.Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme[J]. Nat Struct Mol Biol, 2017, 24(10):825-833.
[16] O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems[J]. J Mol Biol, 2019, 431(1):66-87.
[17] Wan H, Li J, Chang S, et al.Probing the behaviour of Cas1-Cas2 upon protospacer binding in CRISPR-Cas systems using molecular dynamics simulations[J]. Sci Rep, 2019, 9(1):3188.
[18] Ozcan A, Pausch P, Linden A, et al.Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J]. Nat Microbiol, 2019, 4(1):89-96.
[19] Koonin EV, Makarova KS, Zhang F.Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37:67-78.
[20] Cox DBT, Gootenberg JS, Abudayyeh OO, et al.RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366):1019-1027.
[21] Shmakov S, Abudayyeh OO, Makarova KS, et al.Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Mol Cell, 2015, 60(3):385-397.
[22] Marraffini LA, Sontheimer EJ.Self versus non-self discrimination during CRISPR RNA-directed immunity[J]. Nature, 2010, 463(7280):568-571.
[23] Zhang Q, Wen F, Zhang S, et al. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation[J]. Sci Adv, 2019, 5(11):eaaw9807.
[24] Tambe A, East-Seletsky A, Knott GJ, et al.RNA binding and HEPN-nuclease activation are decoupled in CRISPR-Cas13a[J]. Cell Rep, 2018, 24(4):1025-1036.
[25] Gootenberg JS, Abudayyeh OO, Lee JW, et al.Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
[26] Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al.RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675):280-284.
[27] Aman R, Ali Z, Butt H, et al.RNA virus interference via CRISPR/Cas13a system in plants[J]. Genome Biol, 2018, 19(1):1.
[28] Aman R, Mahas A, Butt H, et al.Engineering RNA virus interfe-rence via the CRISPR/Cas13 machinery in Arabidopsis[J]. Viruses, 2018, 10(12):732.
[29] Zhan X, Zhang F, Zhong Z, et al.Generation of virus-resistant potato plants by RNA genome targeting[J]. Plant Biotechnol J, 2019, 17(9):1814-1822.
[30] Freije CA, Myhrvold C, Boehm CK, et al.Programmable inhibition and detection of RNA viruses using Cas13[J]. Mol Cell, 2019, 76(5):826-837.
[31] Zhao X, Liu L, Lang J, et al.A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment[J]. Cancer Lett, 2018, 431:171-181.
[32] Kellner MJ, Koob JG, Gootenberg JS, et al.SHERLOCK:nucleic acid detection with CRISPR nucleases[J]. Nat Protoc, 2019, 14(10):2986-3012.
[33] Gootenberg JS, Abudayyeh OO, Kellner MJ, et al.Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439-444.
[34] Myhrvold C, Freije CA, Gootenberg JS, et al.Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448.
[35] Zhang C, Konermann S, Brideau NJ, et al.Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d[J]. Cell, 2018, 175(1):212-223.
[36] Wang H, Nakamura M, Abbott TR, et al.CRISPR-mediated live imaging of genome editing and transcription[J]. Science, 2019, 365(6459):1301-1305.
[37] Fritzell K, Xu LD, Lagergren J, et al.ADARs and editing:The role of A-to-I RNA modification in cancer progression[J]. Semin Cell Dev Biol, 2018, 79:123-130.
[38] Matthews MM, Thomas JM, Zheng Y, et al.Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity[J]. Nat Struct Mol Biol, 2016, 23(5):426-433.
[39] Montiel-Gonzalez MF, Vallecillo-Viejo I, Yudowski GA, et al.Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing[J]. Proc Natl Acad Sci USA, 2013, 110(45):18285-18290.
[40] Fukuda M, Umeno H, Nose K, et al.Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing[J]. Sci Rep, 2017, 7:41478.
[41] Katrekar D, Chen G, Meluzzi D, et al.In vivo RNA editing of point mutations via RNA-guided adenosine deaminases[J]. Nat Methods, 2019, 16(3):239-242.
[42] Jing X, Xie B, Chen L, et al.Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing[J]. Nucleic Acids Res, 2018, 46(15):e90.
[43] Abudayyeh OO, Gootenberg JS, Franklin B, et al.A cytosine deaminase for programmable single-base RNA editing[J]. Science, 2019, 365(6451):382-386.
[44] Darren J.Burgess. Expanding options for RNA based editors[J]. Nat Rev Genet, 2019, 20(10):563.
[45] Komor AC, Kim YB, Packer MS, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
[46] Gaudelli NM, Komor AC, Rees HA, et al.Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.
[47] Rees HA, Liu DR.Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12):770-788. |