Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 164-172.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0065
Previous Articles Next Articles
ZHAO Lu-yao1(), CHEN Zhen-ya1, HUO Yi-Xin1,2()
Received:
2020-01-17
Online:
2020-11-26
Published:
2020-11-20
Contact:
HUO Yi-Xin
E-mail:18810775793@163.com;huoyixin@bit.edu.cn
ZHAO Lu-yao, CHEN Zhen-ya, HUO Yi-Xin. Advances in Nitrifying Enzymes[J]. Biotechnology Bulletin, 2020, 36(11): 164-172.
蛋白 | 氧化还原结构 | 原始产物 | 突变位点 | 效果 | 参考文献 |
---|---|---|---|---|---|
PrnD | 2Fe-2S | 吡咯尼特林 | F312A L277A | 底物转化效率提高4.89倍 底物转化效率提高3.28倍 | [53] [53] |
TxtE | 血红素 | 4-硝基色氨酸 | 融合BM3R和14氨基酸连接肽 R59X H176F/H176Y | 增加C5催化位点 产量提高3.5倍 催化位点由C4转换为C5 | [54] [55] [55-56] |
AurF | 2Fe-2S | p-硝基苯甲酸 | T100L L202F | 相对活性提高3.14倍 相对活性提高3.57倍 | [57] [57] |
蛋白 | 氧化还原结构 | 原始产物 | 突变位点 | 效果 | 参考文献 |
---|---|---|---|---|---|
PrnD | 2Fe-2S | 吡咯尼特林 | F312A L277A | 底物转化效率提高4.89倍 底物转化效率提高3.28倍 | [53] [53] |
TxtE | 血红素 | 4-硝基色氨酸 | 融合BM3R和14氨基酸连接肽 R59X H176F/H176Y | 增加C5催化位点 产量提高3.5倍 催化位点由C4转换为C5 | [54] [55] [55-56] |
AurF | 2Fe-2S | p-硝基苯甲酸 | T100L L202F | 相对活性提高3.14倍 相对活性提高3.57倍 | [57] [57] |
[1] | Exner O, Krygowski TM. The nitro group as substituent[J]. Chemical Society Reviews, 1996,25(25):71-75. |
[2] | Ono N. The nitro group in organic synbook[M]. New York:Wiley-VCH, 2002. |
[3] | Abdallah M, Asghar BH, Zaafarany I. Synjournal of some aromatic nitro compounds and its applications as inhibitors for corrosion of carbon steel inhydrochloric acid solution[J]. Protection of Metals & Physical Chemistry of Surfaces, 2013,49(4):485-491. |
[4] | Booth G. Nitro compounds, aromatic[M] // Ullmann. Ullmann's encyclopedia of industrial chemistry. New York:Wiley-VCH, 2000: 411-456. |
[5] |
Tan B, Long X, Peng R, et al. Two important factors influencing shock sensitivity of nitro compounds:Bond dissociation energy of X-NO2(X=C, N, O)and Mulliken charges of nitro group[J]. Journal of Hazardous Materials, 2010,183(1):908-912.
doi: 10.1016/j.jhazmat.2010.07.115 URL |
[6] | 崔建海. 第十七届全国金属有机化学学术讨论会论文摘要集(2)[C]. 北京:中国化学会, 2012. |
Cui JH. The 17th national symposium on organometallic chemistry abstracts(2)[C]. Beijing:Chinese Chemical Society, 2012. | |
[7] | Akhavan J. The chemistry of explosives[M]. 2nded. Great Britain:Royal Society of Chemistry, 2011: 3917-3918. |
[8] | Ritter H, Licht H. Synjournal and reactions of dinitrated amino and diaminopyridines[J]. J Heterocycl Chem, 1995,32(2):585-590. |
[9] |
Lancaster NL, Llopis MV. Aromatic nitrations in ionic liquids:the importance of cation choice[J]. Chemical Communications, 2003(22):2812-2813.
URL pmid: 14651117 |
[10] | 杨超飞, 石磊, 谯娟, 等. 镧系金属磺酸盐催化剂在CL-20合成中的应用[J]. 火炸药学报, 2017(5):22-26. |
Yang CF, Shi L, Qiao J, et al. Application of lanthanide metal sulfonate catalysts in the synjournal of CL-20[J]. Chinese Journal of Explosives and Propellants, 2017(5):22-26. | |
[11] | 吕早生, 吕春绪. 一种新的绿色硝化技术[J]. 火炸药学报, 2000,9(4):9-12. |
Lü ZS, Lü CX. A kind of new green nitration technology[J]. Chinese Journal of Explosives and Propellants, 2000,9(4):9-12. | |
[12] | Budde CL, Beyer A, Munir IZ, et al. Enzymatic nitration of phenols[J]. J Mol Catal, 2001,15(1-3):55-64. |
[13] | Muller WE. The benzodiazepine receptor[J]. International Clinical Psychopharmacology, 1990,5(1):72. |
[14] | Mulla SI, Bharagava RN, Belhaj D, et al. An overview of nitro group-containing compounds and herbicides degradation in microorganisms[M]. Microbial Metabolism of Xenobiotic Compounds, 2019: 319-335. |
[15] |
Ono N, Kawamura H, Bougauchi M, et al. Porphyrin synjournal from nitrocompounds[J]. Tetrahedron, 1990,46(21):7483-7496.
doi: 10.1016/S0040-4020(01)89062-1 URL |
[16] |
Dryzhakov M, Hellal M, Wolf E, et al. Nitro-assisted brønsted acid catalysis:application to a challenging catalytic azidation[J]. J Am Chem Soc, 2015,137(30):9555-9558.
doi: 10.1021/jacs.5b06055 URL pmid: 26196521 |
[17] | Polinski LM. Process for the preparation of nitro-substituted arylamines:America, US5612483A[P]. 1996-02-07. |
[18] | Lejarazo GSE, et al. Reduction of nitro compounds, through different reaction conditions combinatory chemistry[J]. Chemistry and Chemical Engineering, 2018,2:8. |
[19] | Pivina TS, Shlyapochnikov VA, Molchanova MS, et al. Molecular screening of high-energy nitrocompounds[J]. Mendeleev Communications, 1991,1(4):122-124. |
[20] | 邓人杰, 游奎一, 周忠仓, 等. NO2催化硝化萘制备二硝基萘[J]. 中国科技论文, 2015(12):1435-1438. |
Deng RJ, You KY, Zhou ZC, et al. Preparation of dinitronaphthalene compounds from the nitration reaction of naphthalene with NO2 as nitration reagent[J]. China Science Paper, 2015(12):1435-1438. | |
[21] |
Wu D, Zhang J, Cui J, et al. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles[J]. Chemical Communications, 2014,50(74):10857-10860.
doi: 10.1039/c4cc01327a URL pmid: 25089911 |
[22] | Yang H, Li Y, Wu M, et al. Plant community responses to nitrogen addition and increased precipitation:the importance of water availability and species traits[J]. Global Change Biology, 2011,17(9):2936-2944. |
[23] | Mellor JM, Mittoo S, Parkes R, et al. Improved nitrations using metal nitrate:sulfuric acid systems[J]. Cheminform, 2010,56(40):8019-8024. |
[24] | 方东, 施群荣, 巩凯, 等. 芳香族化合物绿色硝化反应研究进展[J]. 含能材料, 2008,16(1):103-112, 120. |
Fang D, Shi QR, Gong K, et al. Research progress of clean nitration of aromatic compounds[J]. Chinese Journal of Energenic Materials, 2008,16(1):103-112, 120. | |
[25] |
He J, Hertweck C. Biosynthetic origin of the rare nitroaryl moiety of the polyketide antibiotic aureothin:involvement of an unprecedented N-oxygenase[J]. Journal of the American Chemical Society, 2004,126(12):3694-3695.
doi: 10.1021/ja039328t URL pmid: 15038705 |
[26] | 庾弘朗. BnCmN3nm微团簇结构和红外光谱的DFT研究[J]. 原子与分子物理学报, 2007,24(5):1028-1034. |
Yu HL. A DFT study on structures and infrared spectrum of BnCmN3nm mircoclusters[J]. Journal of Atomic and Molecular Physics, 2007,24(5):1028-1034. | |
[27] | Dunford HB, Stillman JS. On the function and mechanism of action of peroxidases[J]. Coord Chem Rev, 1976,19(3):187-251. |
[28] | Welinder KG. Superfamily of plant, fungal and bacterial peroxidases[J]. Current Opinion Structure Biology, 1992,2(3):388-393. |
[29] | Veillard A, Dedieu A, Rohmer M. The oretical studies of the structure of heme models[M]. Springer Netherlands, 1980: 197-225. |
[30] | Balkus KJ, Pisklak TJ, Huang R. Microperoxidase-11 immobilized in a metal organic framework[J]. ACS Symposium, 2015,986:76-98. |
[31] |
Low DW, Yang G, Winkler JR, et al. Modification of heme peptides by reverse proteolysis:Spectroscopy of microperoxidase-10 with C-terminal histidine, tyrosine, and methionine residues[J]. J Am Chem Soc, 1997,119(17):4094-4095.
doi: 10.1021/ja970103q URL |
[32] | Prieto T, Nantes IL, Nascimento OR. Microperoxidase-9 cycle in the presence of cetyltrimethylammonium bromide micelles:tert-butyl hydroperoxide as both an oxidizing and a reducing agent[M]. Nylandore T. Surface and Colloid Science. Berlin:Springer Verlag, 2004: 193-198. |
[33] | Low DW, Abedin S, Yang G, et al. Manganese microperoxidase-8[J]. Chemtracts, 1998,11(12):923-927. |
[34] |
Aron J, Baldwin DA, Marques HM, et al. Preparation and analysis of the heme-containing octapeptide(microperoxidase-8)and identification of the monomeric form in aqueous solution[J]. Journal of Inorganic Biochemistry, 1986,27(4):227-243.
URL pmid: 3018151 |
[35] |
Marques HM. Cyclic voltammetry of imidazole microperoxidase-8:modeling the control of the redox potential of the cytochromes[J]. Inorganic Chemistry, 1990,29(9):1597-1599.
doi: 10.1021/ic00334a002 URL |
[36] | Ricoux R, Boucher JL, Mansuy D, et al. Microperoxidase-8 catalyzed nitration of phenol by nitrogen dioxide radicals[J]. FEBS Journal, 2010,268(13):3783-3788. |
[37] |
Lecomte S, Ricoux R, Mahy JP, et al. Microperoxidase-8 adsorbed on a roughened silver electrode as a monomeric high-spin penta-coordinated species:characterization by SERR spectroscopy and electrochemistry[J]. J Biol Inorg Chem, 2004,9(7):850.
doi: 10.1007/s00775-004-0586-4 URL pmid: 15340868 |
[38] | Budde CL, Beyer A, Munir IZ, et al. Enzymatic nitration of phenols[J]. J Mol Catal, 2001,15(1):55-64. |
[39] | Mceldoon JP, Dordick JS. Unusual thermal stability of soybean peroxidase[J]. Biotechnol Prog, 1996,12(4):555-558. |
[40] | Welinder KG, Larsen YB. Covalent structure of soybean seed coat peroxidase[J]. Biothim Biophys Acta, 2004,1698(1):121-126. |
[41] | 程婕, 杨凌. 细胞色素P450氧化还原酶的研究进展[J]. 中国药理学报, 2006,22(2):129-133. |
Cheng J, Yang L. New progress in studies on cytochrome P450[J]. Acta Pharmacologica Sinica, 2006,22(2):129-133. | |
[42] |
Barry SM, Kers JA, Johnson EG, et al. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynjournal[J]. Nature Chemical Biology, 2012,8(10):814.
doi: 10.1038/nchembio.1048 URL pmid: 22941045 |
[43] | Yu F, Li M, Xu C, et al. Structural insights into the mechanism for recognizing substrate of the cytochrome P450 enzyme TxtE[J]. PLoS One, 2013,8(11):81526. |
[44] |
Dodani SC, Cahn JK, Heinisch T, et al. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE[J]. ChemBioChem, 2014,15(15):2259-2267.
URL pmid: 25182183 |
[45] |
Simurdiak M, Lee J, Zhao H. A new class of arylamine oxygenases:evidence that p-aminobenzoate N-oxygenase(AurF)is a di-iron enzyme and further mechanistic studies[J]. ChemBioChem, 2006,7(8):1169-1172.
URL pmid: 16927313 |
[46] | Choi YS, Zhang H, Brunzelle JS, et al. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase(AurF)involved in aureothin biosynthesis[J]. Proceedings of the National Academy of Sciences, 2008,105(19):6858-6863. |
[47] |
Korboukh VK, Li N, Barr EW, et al. A long-lived, substrate-hydroxylating peroxodiiron III intermediate in the amine oxygenase, AurF, from Streptomyces thioluteus[J]. Journal of the American Chemical Society, 2009,131(38):13608-13609.
URL pmid: 19731912 |
[48] |
Li N, Korboukh VK, Krebs C, et al. Four-electron oxidation of p-hydroxylaminobenzoate to p-nitrobenzoate by a peroxodiferric complex in AurF from Streptomyces thioluteus[J]. Proc Natl Acad Sci USA, 2010,107(36):15722-15727.
doi: 10.1073/pnas.1002785107 URL pmid: 20798054 |
[49] |
Wang C, Chen H. Convergent theoretical prediction of reactive oxidant structures in diiron arylamine oxygenases AurF and CmlI:peroxo or hydroperoxo?[J]. Journal of the American Chemical Society. 2017,139(37):13038-13046.
doi: 10.1021/jacs.7b06343 URL pmid: 28844144 |
[50] | Lu H, Chanco E, Zhao H. CmlI is an N-oxygenase in the biosynjournal of chloramphenicol[J]. Tetrahedron, 2012,68(37):7651-7654. |
[51] | Knoot CJ, Kovaleva EG, Lipscomb JD. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway[J]. J Biol Inorg Chem, 2016,21(56):589-603. |
[52] | Zhu X, Van KH, Naismith JH. The ternary complex of PrnB(the second enzyme in the pyrrolnitrin biosynjournal pathway), tryptophan, and cyanide yields new mechanistic insights into the indolamine dioxygenase superfamily[J]. Journal of Biological Chemistry, 2010,285(27):21126-21133. |
[53] |
Lee JK, Ang EL, Zhao H. Probing the substrate specificity of aminopyrrolnitrin oxygenase(PrnD)by mutational analysis[J]. Journal of Bacteriology, 2006,188(17):6179-6183.
URL pmid: 16923884 |
[54] |
Zuo R, Zhang Y, Huguet-Tapia JC, et al. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity[J]. Biotechnology Journal, 2016,11(5):624-632.
URL pmid: 26743860 |
[55] | Saroay R. Engineering self-sufficiency and broadened substrate scope into indole-nitrating cytochrome P450 TxtE[D]. New England:University of Warwick, 2018. |
[56] |
Gober JG, Rydeen AE, Gibson EJ, et al. Mutating a highly conserved residue in diverse cytochrome P450s facilitates diastereoselective olefin cyclopropanation[J]. ChemBioChem, 2016,17(5):394-397.
URL pmid: 26690878 |
[57] |
Zocher G, Winkler R, Hertweck C, et al. Structure and action of the N-oxygenase AurF from Streptomyces thioluteus[J]. Journal of Molecular Biology, 2007,373(1):65-74.
URL pmid: 17765264 |
[58] |
Lee J. Reconstitution and characterization of aminopyrrolnitrin oxygenase, a rieske N-oxygenase catalyzes unusual arylamine oxidation[J]. J Biol Chem, 2005,280(44):36719-36727.
doi: 10.1074/jbc.M505334200 URL pmid: 16150698 |
[59] |
Hammer PE, Hill DS, Lam ST, et al. Four genes from Pseudomonas fluorescens that encode the biosynjournal of pyrrolnitrin[J]. Appl Environ Microbiol, 1997,63(6):2147-2154.
doi: 10.1128/AEM.63.6.2147-2154.1997 URL pmid: 9172332 |
[60] |
Pée KHV, Salcher O, Lingens F. Formation of pyrrolnitrin and 3-(2-amino-3-chlorophenyl)pyrrole from 7-chlorotryptophan[J]. Angew Chem Int Ed Engl, 1980,19(10):828-829.
doi: 10.1002/anie.198008281 URL |
[61] |
He J, Hertweck C. Biosynthetic origin of the rare nitroaryl moiety of the polyketide antibiotic aureothin:Involvement of an unprecedented N-oxygenase[J]. Journal of the American Chemical Society, 2004,126(12):3694-3695.
doi: 10.1021/ja039328t URL pmid: 15038705 |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[3] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[4] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[5] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[6] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[9] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[10] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[11] | XU Yuan-yuan, ZHAO Guo-chun, HAO Ying-ying, WENG Xue-huang, CHEN Zhong, JIA Li-ming. Reference Genes Selection and Validation for RT-qPCR in Sapindus mukorossi [J]. Biotechnology Bulletin, 2022, 38(10): 80-89. |
[12] | LIU Xue-dan, YANG Meng, ZHANG Jing, ZHAO Dong-xu. Effects of Glucose-xylose Co-utilization on the Synthesis of D-1,2,4-Butanetriol by Recombinant Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(9): 171-179. |
[13] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[14] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[15] | TAO Yu-cheng, LV Xu-bing, CHENG Sheng-jie, WANG Yan-wen, WANG Wen-feng, JIAO Zhen, WANG Peng-chao. Research Progress on the Efficient Synthesis of Phenylglycine by Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(3): 175-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||