Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 1-14.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0575
MA Xu-hui(), CHEN Ru-mei, LIU Xiao-qing, ZHAO Jun(), ZHANG Xia()
Received:
2020-05-12
Online:
2021-02-26
Published:
2021-02-26
Contact:
ZHAO Jun,ZHANG Xia
E-mail:maxuhui1995@163.com;zhaojun01@caas.cn;xiazhang2013@hotmail.com
MA Xu-hui, CHEN Ru-mei, LIU Xiao-qing, ZHAO Jun, ZHANG Xia. Effects of Melatonin on Root Growth and Drought Tolerance of Maize Seedlings[J]. Biotechnology Bulletin, 2021, 37(2): 1-14.
分类 | 特征 | 缩写 | 单位 | 描述 |
---|---|---|---|---|
主根 | 主根长度 | PAL | cm | 主根(包括主根上的侧根)长度 |
主根表面积 | PSA | cm2 | 主根(包括主根上的侧根)表面积 | |
主根体积 | PRV | cm3 | 主根(包括主根上的侧根)体积 | |
主根长度 | PRL | cm | 主根(不包括主根上的侧根)长度 | |
侧根数目 | LRNPR | branch | 主根上侧根的数目 | |
种子根 | 种子根的长度 | SAL | cm | 种子根(包括种子根上的侧根)的长度 |
种子根的表面积 | SSA | cm2 | 种子根(包括种子根上的侧根)的表面积 | |
种子根的体积 | SRV | cm3 | 种子根(包括种子根上的侧根)的体积 | |
总根 | 总根长 | TRL | cm | 整个根系的长度 |
总根表面积 | TSA | cm2 | 整个根系的表面积 | |
总根体积 | TRV | cm3 | 整个根系的体积 |
分类 | 特征 | 缩写 | 单位 | 描述 |
---|---|---|---|---|
主根 | 主根长度 | PAL | cm | 主根(包括主根上的侧根)长度 |
主根表面积 | PSA | cm2 | 主根(包括主根上的侧根)表面积 | |
主根体积 | PRV | cm3 | 主根(包括主根上的侧根)体积 | |
主根长度 | PRL | cm | 主根(不包括主根上的侧根)长度 | |
侧根数目 | LRNPR | branch | 主根上侧根的数目 | |
种子根 | 种子根的长度 | SAL | cm | 种子根(包括种子根上的侧根)的长度 |
种子根的表面积 | SSA | cm2 | 种子根(包括种子根上的侧根)的表面积 | |
种子根的体积 | SRV | cm3 | 种子根(包括种子根上的侧根)的体积 | |
总根 | 总根长 | TRL | cm | 整个根系的长度 |
总根表面积 | TSA | cm2 | 整个根系的表面积 | |
总根体积 | TRV | cm3 | 整个根系的体积 |
分类 | 特征 | 0 μmol/L | 1 μmol/L | Significance | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
总根 | TRL | 150.375 | 32.656 | 178.512 | 35.414 | ** | |
TSA | 27.414 | 4.482 | 37.812 | 11.272 | ** | ||
TRV | 0.564 | 0.096 | 0.593 | 0.100 | *** | ||
主根 | PAL | 64.432 | 11.777 | 88.796 | 16.124 | ** | |
PRL | 23.265 | 0.959 | 28.709 | 0.962 | **** | ||
PSA | 8.557 | 1.333 | 9.053 | 1.353 | *** | ||
PRV | 0.348 | 0.487 | 0.370 | 0.463 | **** | ||
LRNPR | 207 | 21.818 | 239 | 16.244 | **** | ||
种子根 | SAL | 85.942 | 20.635 | 89.716 | 25.746 | ** | |
SSA | 18.857 | 3.694 | 28.759 | 2.878 | *** | ||
SRV | 0.216 | 0.255 | 0.223 | 0.192 | * |
分类 | 特征 | 0 μmol/L | 1 μmol/L | Significance | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
总根 | TRL | 150.375 | 32.656 | 178.512 | 35.414 | ** | |
TSA | 27.414 | 4.482 | 37.812 | 11.272 | ** | ||
TRV | 0.564 | 0.096 | 0.593 | 0.100 | *** | ||
主根 | PAL | 64.432 | 11.777 | 88.796 | 16.124 | ** | |
PRL | 23.265 | 0.959 | 28.709 | 0.962 | **** | ||
PSA | 8.557 | 1.333 | 9.053 | 1.353 | *** | ||
PRV | 0.348 | 0.487 | 0.370 | 0.463 | **** | ||
LRNPR | 207 | 21.818 | 239 | 16.244 | **** | ||
种子根 | SAL | 85.942 | 20.635 | 89.716 | 25.746 | ** | |
SSA | 18.857 | 3.694 | 28.759 | 2.878 | *** | ||
SRV | 0.216 | 0.255 | 0.223 | 0.192 | * |
分类 | 特征 | 0 μmol/L | 1 μmol/L | Significance | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
总根 | TRL | 105.7 | 20.737 | 132.2 | 9.196 | **** | |
TSA | 15.81 | 4.531 | 25.82 | 3.389 | *** | ||
TRV | 0.332 | 0.058 | 0.469 | 0.06 | *** | ||
主根 | PAL | 53.954 | 7.444 | 61.309 | 11.265 | **** | |
PRL | 18.267 | 1.989 | 21.062 | 2.677 | **** | ||
PSA | 7.155 | 1.142 | 8.162 | 0.933 | * | ||
PRV | 0.159 | 0.013 | 0.312 | 0.014 | ** | ||
LRNPR | 119 | 18.788 | 132 | 24.615 | ** | ||
种子根 | SAL | 51.746 | 21.368 | 70.891 | 15.744 | *** | |
SSA | 8.655 | 4.477 | 17.658 | 5.169 | *** | ||
SRV | 0.123 | 0.266 | 0.158 | 0.187 | ** |
分类 | 特征 | 0 μmol/L | 1 μmol/L | Significance | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
总根 | TRL | 105.7 | 20.737 | 132.2 | 9.196 | **** | |
TSA | 15.81 | 4.531 | 25.82 | 3.389 | *** | ||
TRV | 0.332 | 0.058 | 0.469 | 0.06 | *** | ||
主根 | PAL | 53.954 | 7.444 | 61.309 | 11.265 | **** | |
PRL | 18.267 | 1.989 | 21.062 | 2.677 | **** | ||
PSA | 7.155 | 1.142 | 8.162 | 0.933 | * | ||
PRV | 0.159 | 0.013 | 0.312 | 0.014 | ** | ||
LRNPR | 119 | 18.788 | 132 | 24.615 | ** | ||
种子根 | SAL | 51.746 | 21.368 | 70.891 | 15.744 | *** | |
SSA | 8.655 | 4.477 | 17.658 | 5.169 | *** | ||
SRV | 0.123 | 0.266 | 0.158 | 0.187 | ** |
[1] |
Daryanto S, Wang L, Jacinthe P-A. Global synjournal of drought effects on maize and wheat production[J]. PLoS One, 2016,11(5):e0156362.
doi: 10.1371/journal.pone.0156362 URL pmid: 27223810 |
[2] |
Singh B UK. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress[J]. Plant Growth Regulation, 2003,39:137-141.
doi: 10.1023/A:1022556103536 URL |
[3] | Lerner AB, Case JD, takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes[J]. Journal of the American Chemical Society, 1958,80(10):2587. |
[4] |
Tan DX, Hardeland R, Manchester LC, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science[J]. Journal of Experimental Botany, 2012,63(2):577-597.
doi: 10.1093/jxb/err256 URL |
[5] |
Arnao MB, Hernandez-Ruiz J. Melatonin:plant growth regulator and/or biostimulator during stress?[J]. Trends in Plant Science, 2014,19(12):789-797.
doi: 10.1016/j.tplants.2014.07.006 URL |
[6] |
Hardeland R. Melatonin in plants and other phototrophs:advances and gaps concerning the diversity of functions[J]. Journal of Experimental Botany, 2015,66(3):627-646.
doi: 10.1093/jxb/eru386 URL pmid: 25240067 |
[7] |
Kanwar MK, Yu J, Zhou J. Phytomelatonin:Recent advances and future prospects[J]. Journal of Pineal Research, 2018,65(4):e12526.
doi: 10.1111/jpi.12526 URL pmid: 30256447 |
[8] |
Vadez V. Root hydraulics:The forgotten side of roots in drought adaptation[J]. Field Crops Research, 2014,165:15-24.
doi: 10.1016/j.fcr.2014.03.017 URL |
[9] |
Lynch J. Root architecture and plant productivity[J]. Plant Physiology, 1995,109(1):7-13.
doi: 10.1104/pp.109.1.7 URL pmid: 12228579 |
[10] |
Hochholdinger F, Woll K, Sauer M, et al. Genetic dissection of root formation in maize(Zea mays L.)reveals root-type specific developmental programmes[J]. Annals of Botany, 2004,93(4):359-368.
doi: 10.1093/aob/mch056 URL pmid: 14980975 |
[11] |
Zhang N, Zhao B, Zhang HJ, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber(Cucumis sativus L.)[J]. Journal of Pineal Research, 2013,54(1):15-23.
doi: 10.1111/j.1600-079X.2012.01015.x URL pmid: 22747917 |
[12] |
Zhang N, Zhang HJ, Zhao B, et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation[J]. Journal of Pineal Research, 2014,56(1):39-50.
doi: 10.1111/jpi.12095 URL |
[13] |
Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple[J]. Journal of Pineal Research, 2013,54(3):292-302.
doi: 10.1111/jpi.12017 URL pmid: 23106234 |
[14] | Xu XD, Sun Y, Guo XQ, et al. Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress[J]. Chinese Journal of Applied Ecology, 2010,21(10):2580-2586. |
[15] | Gao QH, Jia SS, Miao YM, et al. Effects of exogenous melatonin on nitrogen metabolism and osmotic adjustment substances of melon seedlings under sub-low temperature[J]. Chinese Journal of Applied Ecology, 2016,27(2):519-524. |
[16] |
Kostopoulou Z, Therios I, Roumeliotis E, et al. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings[J]. Plant Physiology and Biochemistry, 2015,86:155-165.
URL pmid: 25500452 |
[17] |
Zhang N, Sun Q, Zhang H, et al. Roles of melatonin in abiotic stress resistance in plants[J]. Journal of Experimental Botany, 2015,66(3):647-656.
doi: 10.1093/jxb/eru336 URL pmid: 25124318 |
[18] | Xu L, Zhang F, Tang M, et al. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants[J]. Journal of Pineal Research, 2020: e12659. |
[19] |
Yang H, Dai LJ, Wei YX, et al. Melatonin enhances salt stress tolerance in rubber tree(Hevea brasiliensis)seedlings[J]. Industrial Crops and Products, 2020,145:111990.
doi: 10.1016/j.indcrop.2019.111990 URL |
[20] |
Meng JF, Xu TF, Wang ZZ, et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress:antioxidant metabolites, leaf anatomy, and chloroplast morphology[J]. Journal of Pineal Research, 2014,57(2):200-212.
doi: 10.1111/jpi.12159 URL |
[21] |
Li D, Wei J, Peng Z, et al. Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis[J]. Journal of Pineal Research, 2020,68(3):e12640.
doi: 10.1111/jpi.12640 URL pmid: 32064655 |
[22] | Turner NC. Techniques and experimental approaches for the measurement of plant water status[J]. Plant Soil, 1981,58(1):339-366. |
[23] |
Wei J, Li DX, Zhang JR, et al. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana[J]. Journal of Pineal Research, 2018,65(2):e12500.
URL pmid: 29702752 |
[24] |
Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives:a never-ending interaction of melatonin with reactive oxygen and nitrogen species?[J]. Journal of Pineal Research, 2007,42(1):28-42.
doi: 10.1111/j.1600-079X.2006.00407.x URL pmid: 17198536 |
[25] | Turner NC, Wright GC, Siddique KHH. Adaptation of grain legumes(pulses)to water-limited environments[J]. Advances in Agronomy, 2001,71:193-231. |
[26] | Subbarao GV, Johansen C, Slinkard AE, et al. Strategies for improving drought resistance in grain legumes[J]. Critical Reviews in Plant Sciences, 1995,14(6):469-523. |
[27] | Kavar T, Maras M, Kidric M, et al. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress[J]. Molecular Breeding, 2008,21(2):159-172. |
[28] |
Chen Q, Qi WB, Reiter RJ, et al. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea[J]. Journal of Plant Physiology, 2009,166(3):324-328.
doi: 10.1016/j.jplph.2008.06.002 URL pmid: 18706737 |
[29] |
Sarropoulou VN, Therios IN, Dimassi-Theriou KN. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P(Prunus cerasus L.), Gisela 6(P. cerasus x P. canescens), and MxM 60(P. avium x P. mahaleb)[J]. Journal of Pineal Research, 2012,52(1):38-46.
URL pmid: 21749439 |
[30] |
Zhou Y, Chen M, Guo J, et al. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field[J]. Journal of Experimental Botany, 2020,71(6):1842-1857.
doi: 10.1093/jxb/erz569 URL pmid: 31875914 |
[31] | de Souza TC, Magalhães PC, de Castro EM, et al. ABA application to maize hybrids contrasting for drought tolerance:changes in water parameters and in antioxidant enzyme activity[J]. Plant Growth Regulation, 2014,73(3):205-217. |
[32] |
Chen YE, Cui JM, Su YQ, et al. Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance[J]. Scientific Reports, 2017,7(1):12718.
URL pmid: 28983110 |
[33] |
Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system:reactions and products[J]. Biological Signals and Receptors, 2000,9(3-4):137-159.
URL pmid: 10899700 |
[34] |
Shi HT, Jiang C, Ye TT, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass[Cynodon dactylon(L). Pers. ]by exogenous melatonin[J]. Journal of Experimental Botany, 2015,66(3):681-694.
doi: 10.1093/jxb/eru373 URL pmid: 25225478 |
[35] |
Zhao G, Zhao Y, Yu X, et al. Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed(Brassica napus L.)seedlings[J]. International Journal of Molecular Sciences, 2018,19(7).
doi: 10.3390/ijms19072128 URL pmid: 30037122 |
[36] | Gu Q, Chen Z, Yu X, et al. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis[J]. Plant Science, 2017,261:28-37. |
[37] |
Sun C, Lv T, Huang L, et al. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat[J]. Journal of Pineal Research, 2020,68(4):e12642.
doi: 10.1111/jpi.12642 URL pmid: 32092171 |
[38] |
Zuo B, Zheng X, He P, et al. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants[J]. Journal of Pineal Research, 2014,57(4):408-417.
doi: 10.1111/jpi.12180 URL pmid: 25250844 |
[39] |
Shi H, Qian Y, Tan DX, et al. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis[J]. Journal of Pineal Research, 2015,59(3):334-342.
doi: 10.1111/jpi.12262 URL pmid: 26182834 |
[40] | Zuo Z, Sun L, Wang T, et al. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-zno stress[J]. Molecules, 2017,22(10):1727. |
[41] |
Arnao MB, Hernandez-Ruiz J. Melatonin:a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science, 2019,24(1):38-48.
doi: 10.1016/j.tplants.2018.10.010 URL pmid: 30446305 |
[42] |
Wei W, Li QT, Chu YN, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J]. Journal of Experimental Botany, 2015,66(3):695-707.
URL pmid: 25297548 |
[43] |
Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000,51(345):659-668.
URL pmid: 10938857 |
[44] | Xin CP, Yang J, Zhu XG. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units[J]. Photosynjournal Research, 2013,117(1-3):339-354. |
[45] |
Nikolaou A, Bernardi A, Meneghesso A, et al. A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation[J]. Journal of Biotechnology, 2015,194:91-99.
doi: 10.1016/j.jbiotec.2014.12.001 URL pmid: 25527384 |
[46] | Ye J, Wang S, Deng X, et al. Melatonin increased maize(Zea mays L.)seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage[J]. Acta Physiologiae Plantarum, 2016,38(2):48. |
[47] |
Sokolovic D, Djordjevic B, Kocic G, et al. The effects of melatonin on oxidative stress parameters and dna fragmentation in testicular tissue of rats exposed to microwave radiation[J]. Advances in Clinical and Experimental Medicine, 2015,24(3):429-436.
doi: 10.17219/acem/43888 URL pmid: 26467130 |
[48] | Sun Q, Zhang N, Wang J, et al. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life[J]. Journal of Experimental Botany, 2015,66(3):657-668. |
[49] |
Sun Q, Zhang N, Wang J, et al. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato[J]. Journal of Pineal Research, 2016,61(2):138-153.
URL pmid: 26820691 |
[50] |
Ahmad S, Kamran M, Ding R, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings[J]. PeerJ, 2019,7:e7793.
doi: 10.7717/peerj.7793 URL pmid: 31616591 |
[51] | Huang B, Chen YE, Zhao YQ, et al. Exogenous melatonin alleviates oxidative damages and protects photosystemii in maize seedlings under drought stress[J]. Front Plant Science, 2019,10:677. |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[3] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[4] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[7] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[8] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[9] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[10] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[11] | ZHAO Jia, ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong. Advances in the Antioxidant Activities of Lactic Acid Bacteria and Their Applications [J]. Biotechnology Bulletin, 2023, 39(11): 182-190. |
[12] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[13] | RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis [J]. Biotechnology Bulletin, 2023, 39(1): 150-156. |
[14] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[15] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||