Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 234-245.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0717
Previous Articles Next Articles
LU Wen-ying1(), ZHAO Lei2, LI Tian-qi1, CUI He-yun3, LIAO Ping-an1
Received:
2020-06-20
Online:
2021-01-26
Published:
2021-01-15
LU Wen-ying, ZHAO Lei, LI Tian-qi, CUI He-yun, LIAO Ping-an. Research Advances of Fruit Anthocyanin Accumulation in Rosaceae Plants[J]. Biotechnology Bulletin, 2021, 37(1): 234-245.
属名 | 种名 | 拉丁文名 | 染色体数目 | 基因组 大小/Mb |
---|---|---|---|---|
草莓属 | 森林草莓 | Fragaria vesca | 2n=2x=14 | 240 |
草莓 | Fragaria ananassa | 2n=8x=56 | 240 | |
苹果属 | 苹果 | Malus domestica | n=17 | 750 |
李属 | 桃 | Prunus persica | 2n=2x=16 | 265 |
杏 | Prunus armeniaca | 2n=2x=16 | 240 | |
甜樱桃 | Prunus avium | 2n=2x=16 | 338 | |
中国李 | Prunus cerasifera | 2n=2x=16 | ||
欧洲李 | Prunus domestica | 2n=6x=48 | ||
梨属 | 欧洲梨 | Pyrus communis | 2n=2x=34 | 577 |
沙梨 | Pyrus pyrifolia | 2n=2x=34 | ||
白梨 | Pyrus bretschneideri | 2n=2x=34 | 509 | |
悬钩子属 | 黑树莓 | Rubus occidentalis | 2n=2x=14 | 240 |
红树莓 | Rubus idaeus | 2n=2x=14 | 240 |
属名 | 种名 | 拉丁文名 | 染色体数目 | 基因组 大小/Mb |
---|---|---|---|---|
草莓属 | 森林草莓 | Fragaria vesca | 2n=2x=14 | 240 |
草莓 | Fragaria ananassa | 2n=8x=56 | 240 | |
苹果属 | 苹果 | Malus domestica | n=17 | 750 |
李属 | 桃 | Prunus persica | 2n=2x=16 | 265 |
杏 | Prunus armeniaca | 2n=2x=16 | 240 | |
甜樱桃 | Prunus avium | 2n=2x=16 | 338 | |
中国李 | Prunus cerasifera | 2n=2x=16 | ||
欧洲李 | Prunus domestica | 2n=6x=48 | ||
梨属 | 欧洲梨 | Pyrus communis | 2n=2x=34 | 577 |
沙梨 | Pyrus pyrifolia | 2n=2x=34 | ||
白梨 | Pyrus bretschneideri | 2n=2x=34 | 509 | |
悬钩子属 | 黑树莓 | Rubus occidentalis | 2n=2x=14 | 240 |
红树莓 | Rubus idaeus | 2n=2x=14 | 240 |
[1] | He J, Giusti MM. Anthocyanins:Natural colorants with health-promoting properties[J]. Annual Review of Food Science & Technology, 2010,1(1):163-187. |
[2] | Lightbourn GJ, Griesbach RJ, Novotny JA, et al. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L.[J]. Journal of Heredity, 2008,99(2):105-111. |
[3] | Sass-Kiss A, Kiss J, Milotay P, et al. Differences in anthocyanin and carotenoid content of fruits and vegetables[J]. Food Research International, 2005,38(8-9):1023-1029. |
[4] | Weldon WFR. Mendel’s laws of alternative inheritance in peas[J]. Biometrika, 1902,1(2):228-254. |
[5] | Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynjournal[J]. The Plant Cell, 1995,7(7):1071. |
[6] | Han Y, Vimolmangkang S, Soria-Guerra RE, et al. Ectopic expression of apple F3' H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiology, 2010,153(2):806-820. |
[7] | Jiang F, Wang JY, Jia HF, et al. RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynjournal in strawberry fruit[J]. J Plant Growth Regul, 2013,1:182-190. |
[8] | Lin X, Xiao M, Luo Y, et al. The effect of RNAi-induced silencing of FaDFR on anthocyanin metabolism in strawberry(Fragaria× ananassa)fruit[J]. Scientia Horticulturae, 2013,160:123-128. |
[9] |
Jaakola L. New insights into the regulation of anthocyanin biosynjournal in fruits[J]. Trends in Plant Science, 2013,18(9):477-483.
URL pmid: 23870661 |
[10] |
Rahim MA, Busatto N, Trainotti L. Regulation of anthocyanin biosynjournal in peach fruits[J]. Planta, 2014,240(5):913-929.
doi: 10.1007/s00425-014-2078-2 URL pmid: 24827911 |
[11] | González M, Salazar E, Cabrera S, et al. Analysis of anthocyanin biosynjournal genes expression profiles in contrasting cultivars of Japanese plum(Prunus salicina L.)during fruit development[J]. Gene Exp Patterns, 2016,21(1):54-62. |
[12] |
Gomez C, Conejero G, Torregrosa L, et al. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST[J]. The Plant Journal, 2011,67(6):960-970.
URL pmid: 21605207 |
[13] |
Luo H, Dai C, Li Y, et al. Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry[J]. Journal of Experimental Botany, 2018,69(10):2595-2608.
doi: 10.1093/jxb/ery096 URL pmid: 29538703 |
[14] |
Jiang S, Chen M, He N, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research, 2019,6:40.
doi: 10.1038/s41438-019-0118-6 URL pmid: 30854214 |
[15] | Wu M, Liu J, Song L, et al. Differences among the anthocyanin accumulation patterns and related gene expression levels in red pears[J]. Plants, 2019,8(4):100. |
[16] |
Zhao Y, Dong W, Zhu Y, et al. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach[J]. Plant Biotechnol J, 2020,18(5):1284-1295.
URL pmid: 31693790 |
[17] |
An XH, Tian Y, Chen KQ, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. J Plant Physiol, 2012,169(7):710-717.
doi: 10.1016/j.jplph.2012.01.015 URL pmid: 22405592 |
[18] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL pmid: 20674465 |
[19] |
Lloyd A, Brockman A, Aguirre L, et al. Advances in the MYB-bHLH-WD repeat(MBW)pigment regulatory model:Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant and Cell Physiology, 2017,58(9):1431-1441.
doi: 10.1093/pcp/pcx075 URL pmid: 28575507 |
[20] | Ban Y, Honda C, Hatsuyama Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant and Cell Physiology, 2007,48(7):958-970. |
[21] |
Takos AM, Jaffé FW, Jacob SR, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynjournal in red apples[J]. Plant Physiology, 2006,142(3):1216-1232.
doi: 10.1104/pp.106.088104 URL pmid: 17012405 |
[22] |
Espley RV, Hellens RP, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. The Plant Journal, 2007,49(3):414-427.
doi: 10.1111/j.1365-313X.2006.02964.x URL pmid: 17181777 |
[23] |
An XH, Tian Y, Chen KQ, et al. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynjournal of anthocyanin and proanthocyanidin in apples[J]. Plant and Cell Physiology, 2015,56(4):650-662.
doi: 10.1093/pcp/pcu205 URL pmid: 25527830 |
[24] |
Wang Y, Liu W, Jiang H, et al. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynjournal in apple[J]. Plant Physiology and Biochemistry, 2019,139:273-282.
doi: 10.1016/j.plaphy.2019.03.031 URL pmid: 30925437 |
[25] | Vimolmangkang S, Han Y, Wei G, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynjournal and flower development[J]. BMC Plant Biology, 2013,13(1):176. |
[26] |
An JP, Wang XF, Zhang XW, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation[J]. Plant Biotechnology Journal, 2020,18(2):337-353.
doi: 10.1111/pbi.13201 URL pmid: 31250952 |
[27] |
Feng S, Wang Y, Yang S, et al. Anthocyanin biosynjournal in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta, 2010,232(1):245-255.
URL pmid: 20422209 |
[28] | Pierantoni L, Dondini L, De Franceschi P, et al. Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis[J]. Plant Physiology and Biochemistry, 2010,48(12):1020-1026. |
[29] |
Feng S, Sun S, Chen X, et al. PyMYB10 and PyMYB10. 1 interact with bHLH to enhance anthocyanin accumulation in pears[J]. PLoS One, 2015,10(11):e0142112.
doi: 10.1371/journal.pone.0142112 URL pmid: 26536358 |
[30] | Feng S, Xu Y, Yang L, et al. Genome-wide identification and characterization of R2R3-MYB transcription factors in pear[J]. Scientia Horticulturae, 2015,197:176-182. |
[31] |
Zhai R, Wang Z, Zhang S, et al. Two MYB transcription factors regulate flavonoid biosynjournal in pear fruit(Pyrus bretschneideri Rehd. )[J]. J Exp Bot, 2016,67(5):1275-1284.
URL pmid: 26687179 |
[32] |
Yao G, Ming M, Allan AC, et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynjournal[J]. The Plant Journal, 2017,92(3):437-451.
URL pmid: 28845529 |
[33] | Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, et al. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits[J]. Journal of Experimental Botany, 2014,65(2):401-417. |
[34] | Tuan PA, Bai S, Yaegaki H, et al. The crucial role of PpMYB10. 1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype[J]. BMC Plant Biology, 2015,15(1):280. |
[35] | Gu C, Liao L, Zhou H, et al. Constitutive activation of an anthocyanin regulatory gene PcMYB10. 6 is related to red coloration in purple-foliage plum[J]. PLoS One, 2015,10(8):e0135159. |
[36] |
Shen X, Zhao K, Liu L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynjournal in red-colored sweet cherry cv. Hong Deng(Prunus avium L.)[J]. Plant and Cell Physiology, 2014,55(5):862-880.
URL pmid: 24443499 |
[37] |
Jin W, Wang H, Li M, et al. The R2R3 MYB transcription factor PavMYB10. 1 involves in anthocyanin biosynjournal and determines fruit skin colour in sweet cherry(Prunus avium L.)[J]. Plant Biotechnology Journal, 2016,14(11):2120-2133.
doi: 10.1111/pbi.12568 URL pmid: 27107393 |
[38] | Xi W, Feng J, Liu Y, et al. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynjournal in apricots and determines red blushed skin[J]. BMC Plant Biol, 2019,1:287. |
[39] |
Zhou H, Liao L, Xu S, et al. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach[J]. Plant Mol Biol, 2018,98(1-2):169-183.
URL pmid: 30155830 |
[40] |
Aharoni A, De Vos CH, Wein M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. The Plant Journal, 2001,28(3):319-332.
URL pmid: 11722774 |
[41] |
Salvatierra A, Pimentel P, Moya-León MA, et al. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene[J]. Phytochemistry, 2013,90:25-36.
URL pmid: 23522932 |
[42] |
Xu H, Wang N, Liu J, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and Mdb-HLH33 genes[J]. Plant Mol Biol, 2017,94(1-2):149-165.
URL pmid: 28286910 |
[43] |
Xu H, Yang G, Zhang J, et al. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus[J]. Biochemical and Biophysical Research Communications, 2018,500(2):405-410.
URL pmid: 29655791 |
[44] | Zhou H, Wang LK, Wang F, et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. New Phytologist, 2019,221(4):1919-1934. |
[45] | Song L, Wang X, Han W, et al. PbMYB120 negatively regulates anthocyanin accumulation in pear[J]. International Journal of Molecular Sciences, 2020,21(4):1528. |
[46] |
Li YY, Mao K, Zhao C, et al. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynjournal and red fruit coloration in apple[J]. Plant Physiology, 2012,160(2):1011-1022.
URL pmid: 22855936 |
[47] | An JP, Qu FJ, Yao JF, et al. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple[J]. Horticulture Research, 2017,4(1):1-9. |
[48] | Plunkett BJ, Henry-Kirk R, Friend A, et al. Apple B-box factors regulate light-responsive anthocyanin biosynjournal genes[J]. Scientific Reports, 2019,9(1):1-14. |
[49] |
An JP, Wang XF, Espley RV, et al. An apple B-Box protein MdBBX37 modulates anthocyanin biosynjournal and hypocotyl elongation synergistically with MdMYBs and MdHY5[J]. Plant and Cell Physiology, 2020,61(1):130-143.
URL pmid: 31550006 |
[50] | An JP, Liu YJ, Zhang XW, et al. Dynamic regulation of different light intensity-modulated anthocyanin biosynjournal by BT2-TCP46-MYB1 in apple[J]. J Exp Bot, 2020,71(10):3094-3109. |
[51] |
Yang T, Ma H, Zhang J, et al. Systematic identification of long non-coding RNA s expressed during light-induced anthocyanin accumu-lation in apple fruit[J]. Plant J, 2019,100(3):572-590.
doi: 10.1111/tpj.14470 URL pmid: 31344284 |
[52] |
Bai S, Tao R, Tang Y, et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnology Journal, 2019,17(10):1985-1997.
doi: 10.1111/pbi.13114 URL pmid: 30963689 |
[53] |
Li Y, Xu P, Chen G, et al. FvbHLH9 functions as a positive regulator of anthocyanin biosynjournal by forming a HY5-bHLH9 transcription complex in strawberry fruits[J]. Plant and Cell Physiology, 2020,61(4):826-837.
URL pmid: 32016380 |
[54] |
Tao R, Bai S, Ni J, et al. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’pear[J]. Planta, 2018,248(1):37-48.
URL pmid: 29546452 |
[55] | Ni J, Bai S, Zhao Y, et al. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynjournal in ‘Red Zaosu’pear fruits by interacting with MYB114[J]. Plant Molecular Biology, 2019,99(1-2):67-78. |
[56] | Xu F, Cao S, Shi L, et al. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit[J]. J Agricl Food Chem, 2014,62(20):4778-4783. |
[57] |
Zhao Y, Dong W, Wang K, et al. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars[J]. Frontiers in Plant Science, 2017,8:1552.
URL pmid: 28943881 |
[58] |
An JP, Wang XF, Zhang XW, et al. MdBBX22 regulates UV-B-induced anthocyanin biosynjournal through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation[J]. Plant Biotechnol J, 2019,17(12):2231-2233.
doi: 10.1111/pbi.13196 URL pmid: 31222855 |
[59] |
Fang H, Dong Y, Yue X, et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature[J]. Plant, Cell & Environment, 2019,42(7):2090-2104.
doi: 10.1111/pce.13552 URL pmid: 30919454 |
[60] |
Hu J, Fang H, Wang J, et al. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synjournal in apple[J]. Plant Science, 2020,292:110377.
doi: 10.1016/j.plantsci.2019.110377 URL pmid: 32005382 |
[61] |
Xie XB, Li S, Zhang RF, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant, Cell & Environment, 2012,35(11):1884-1897.
URL pmid: 22519753 |
[62] | Wang KL, Micheletti D, Palmer J, et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J]. Plant Cell Environ, 2011,34(7):1176-1190. |
[63] | Zhang Y, Liu Y, Hu W, et al. Anthocyanin accumulation and rela-ted gene expression affected by low temperature during strawberry coloration[J]. Acta Physiol Plant, 2018,40(11):192. |
[64] | Martinsen BK, Aaby K, Skrede G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams[J]. Food Chemistry, 2020,316:126297. |
[65] | An JP, Zhang XW, Bi SQ, et al. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynjournal in apple[J]. Plant J, 2020,101(3):573-589. |
[66] | Wang XF, An JP, Liu X, et al. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynjournal by interacting with the MdMYB1 transcription factor[J]. Plant Physiology, 2018,178(2):890-906. |
[67] | Li D, Zhang X, Li L, et al. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit[J]. Food Chemistry, 2019,285:163-170. |
[68] | Cheng Y, Liu L, Yuan C, et al. Molecular characterization of ethylene-regulated anthocyanin biosynjournal in plums during fruit ripening[J]. Plant Mol Biol Rep, 2016,34(4):777-785. |
[69] | An JP, Wang XF, Li YY, et al. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynjournal and anthocyanin accumulation[J]. Plant Physiology, 2018,178(2):808-823. |
[70] | Zhang J, Xu H, Wang N, et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynth-esis in apple[J]. Plant Mol Biol, 2018,98(3):205-218. |
[71] | Ni J, Zhao Y, Tao R, et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynjournal pathway by suppressing anthocyanin biosynjournal in red Chinese pear fruits[J]. Plant Biotechnology Journal, 2020,18(5):1223-1240. |
[72] | Qi T, Song S, Ren Q, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011,23(5):1795-1814. |
[73] | Wu T, Liu HT, Zhao GP, et al. Jasmonate and ethylene-regulated ethylene response factor 22 promotes lanolin-induced anthocyanin biosynjournal in ‘Zaosu’pear(Pyrus bretschneideri Rehd. )fruit[J]. Biomolecules, 2020,10(2):278. |
[74] | An JP, Yao JF, Xu RR, et al. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation[J]. Plant Cell Environ, 2018,41(11):2678-2692. |
[75] | Mori T, Sakurai M, Seki M, et al. Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell[J]. Journal of the Science of Food and Agriculture, 1994,65(3):271-276. |
[76] | Moro L, Hassimotto NMA, Purgatto E. Postharvest auxin and methyl jasmonate effect on anthocyanin biosynjournal in red raspberry(Rubus idaeus L.)[J]. Journal of Plant Growth Regulation, 2017,36(3):773-782. |
[77] | Wang Y, Wang N, Xu H, et al. Auxin regulates anthocyanin biosynjournal through the Aux/IAA-ARF signaling pathway in apple[J]. Horticulture Research, 2018,5(1):1-11. |
[78] | Zhang Y, Liu Z, Liu R, et al. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner[J]. Plant Signal Beha, 2011,6(5):632-634. |
[79] | Zhai R, Wang Z, Yang C, et al. PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit[J]. Horticulture Research, 2019,6:137. |
[80] | Ji XH, Wang YT, Zhang R, et al. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynjournal in callus cultures of red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J]. Plant Cell Tiss Organ Cult, 2015,120:325-337. |
[81] | Wang Y, Sun J, Wang N, et al. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynjournal in red-fleshed apple(Malus sieversii f. niedzwetzkyana)callus[J]. Functional Plant Biology, 2019,46(2):187-196. |
[82] | Zheng J, An Y, Wang L. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’apple flesh[J]. Plant Cell Tiss Organ Cult, 2018,134(2):319-330. |
[83] | Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J]. New Phytologist, 2008,179(4):1004-1016. |
[84] | Das PK, Shin DH, Choi SB, et al. Cytokinins enhance sugar-induced anthocyanin biosynjournal in Arabidopsis[J]. Molecules and Cells, 2012,34(1):93-101. |
[85] | Li Y, Van den Ende W, Rolland F. Sucrose induction of anthocyanin biosynjournal is mediated by DELLA[J]. Molecular Plant, 2014,7(3):570-572. |
[86] | Liu XJ, An XH, Liu X, et al. MdSnRK1. 1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple[J]. Journal of Experimental Botany, 2017,68(11):2977-2990. |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[3] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[6] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[7] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[9] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[10] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[11] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[12] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[13] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[14] | JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(3): 232-242. |
[15] | YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation [J]. Biotechnology Bulletin, 2023, 39(2): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||