Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 84-91.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0910
Previous Articles Next Articles
CHEN Chun(), SU Ling-qia, XIA Wei, WU Jing
Received:
2020-07-20
Online:
2021-03-26
Published:
2021-04-02
CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution[J]. Biotechnology Bulletin, 2021, 37(3): 84-91.
MgCl2/(mmol·L-1) | MnCl2/(mmol·L-1) | 核苷酸易错率/kb |
---|---|---|
2.5 | 0.1 | 0-4 |
0.2 | 4-8 | |
0.3 | 7-10 | |
5 | 0.1 | 8-11 |
0.2 | 10-14 | |
0.3 | 11-15 |
MgCl2/(mmol·L-1) | MnCl2/(mmol·L-1) | 核苷酸易错率/kb |
---|---|---|
2.5 | 0.1 | 0-4 |
0.2 | 4-8 | |
0.3 | 7-10 | |
5 | 0.1 | 8-11 |
0.2 | 10-14 | |
0.3 | 11-15 |
纯化步骤 | 总蛋白含量/mg | 总酶 活/U | 比活力/ (U· mg-1) | 纯化 倍数 | 回收 率/% | |
---|---|---|---|---|---|---|
粗酶液 | 野生型 | 262 | 29 370 | 112.3 | 1.0 | 100 |
L137M | 248 | 27 914 | 112.6 | 1.0 | 100 | |
A216T | 251 | 29 048 | 115.6 | 1.0 | 100 | |
硫酸铵沉淀 | 野生型 | 56 | 19 972 | 359.4 | 3.2 | 68 |
L137M | 49 | 18 256 | 371.7 | 3.3 | 65 | |
A216T | 52 | 19 171 | 369.9 | 3.2 | 66 | |
MonoQ阴离子交换柱 | 野生型 | 15 | 8 635 | 572.8 | 5.1 | 29 |
L137M | 12 | 7 537 | 608.3 | 5.4 | 27 | |
A216T | 14 | 9 005 | 647.3 | 5.6 | 31 |
纯化步骤 | 总蛋白含量/mg | 总酶 活/U | 比活力/ (U· mg-1) | 纯化 倍数 | 回收 率/% | |
---|---|---|---|---|---|---|
粗酶液 | 野生型 | 262 | 29 370 | 112.3 | 1.0 | 100 |
L137M | 248 | 27 914 | 112.6 | 1.0 | 100 | |
A216T | 251 | 29 048 | 115.6 | 1.0 | 100 | |
硫酸铵沉淀 | 野生型 | 56 | 19 972 | 359.4 | 3.2 | 68 |
L137M | 49 | 18 256 | 371.7 | 3.3 | 65 | |
A216T | 52 | 19 171 | 369.9 | 3.2 | 66 | |
MonoQ阴离子交换柱 | 野生型 | 15 | 8 635 | 572.8 | 5.1 | 29 |
L137M | 12 | 7 537 | 608.3 | 5.4 | 27 | |
A216T | 14 | 9 005 | 647.3 | 5.6 | 31 |
Km /(mmol·L-1) | kcat(S-1) | kcat/Km /(S-1 mmol·L-1) | |
---|---|---|---|
野生型 | 5.03±0.37 | 1 278±40 | 254±12 |
L137M | 5.01±0.35 | 1 244±53 | 248±13 |
A216T | 5.15±0.41 | 1 325±47 | 257±15 |
Km /(mmol·L-1) | kcat(S-1) | kcat/Km /(S-1 mmol·L-1) | |
---|---|---|---|
野生型 | 5.03±0.37 | 1 278±40 | 254±12 |
L137M | 5.01±0.35 | 1 244±53 | 248±13 |
A216T | 5.15±0.41 | 1 325±47 | 257±15 |
[1] |
Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, Biocompatible and Bioactive Materials[J]. Molecules, 2008,13(8):1773-1816.
doi: 10.3390/molecules13081773 URL pmid: 18794785 |
[2] | Gesellschaft DC. Berichte der deutschen chemischen gesellschaft[M]. Berlin:Verlag Chemie, 1888. |
[3] |
Cai X, Seitl I, Mu W, et al. Biotechnical production of trehalose through the trehalose synthase pathway:current status and future prospects[J]. Applied Microbiology and Biotechnology, 2018,102(7):2965-2976.
doi: 10.1007/s00253-018-8814-y URL pmid: 29460000 |
[4] | 庸琦. 脂肪干细胞-脱钙骨复合物玻璃化冻存的初步研究[D]. 乌鲁木齐:新疆医科大学, 2014. |
Yong Q. A preliminary study on vitrification preservation Of ASCs/demineralized bone tissue complex[D]. Urumqi:Xinjiang Medical University, 2014. | |
[5] | 阚洪玲, 孙洪涛, 董建军. 海藻糖在化妆品中的应用[J]. 食品与药品, 2005,7(9):48-50. |
Kan HL, Sun HT, DONG JJ. The applications of trehose on cosmetic[J]. Food and Drug, 2005,7(9):48-50. | |
[6] |
Arai C, Kohguchi M, Akamatsu S, et al. Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis bone marrow in mice[J]. Nutrition Research, 2001,21(7):993-999.
doi: 10.1016/s0271-5317(01)00315-3 URL pmid: 11446983 |
[7] |
Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease[J]. Nature Medicine, 2004,10(2):148-154.
doi: 10.1038/nm985 URL pmid: 14730359 |
[8] |
Oku K, Sawatani I, Sugimoto S, et al. Functional properties of trehalose[J]. Journal of Applied Glycoscience, 2002,49(3):351-357.
doi: 10.5458/jag.49.351 URL |
[9] |
Roser B. Trehalose, a new approach to premium dried foods[J]. Trends in Food Science & Technology, 1991,2:166-169.
doi: 10.1016/0924-2244(91)90671-5 URL |
[10] |
Ohtake S, Wang YJ. Trehalose:current use and future applications[J]. Journal of Pharmaceutical Sciences, 2011,100(6):2020-2053.
doi: 10.1002/jps.22458 URL |
[11] |
Schiraldi C, Di Lernia I, De Rosa M. Trehalose production:exploiting novel approaches[J]. Trends in Biotechnology, 2002,20(10):420-425.
doi: 10.1016/s0167-7799(02)02041-3 URL pmid: 12220904 |
[12] |
Nishimoto T, Nakano M, Nakada T, et al. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48[J]. Bioscience, Biotechnology, and Biochemistry, 1996,60(4):640-644.
URL pmid: 8829531 |
[13] |
Eastmond PJ, Graham IA. Trehalose metabolism:a regulatory role for trehalose-6-phosphate?[J]. Current Opinion in Plant Biology, 2003,6(3):231-235.
doi: 10.1016/S1369-5266(03)00037-2 URL |
[14] |
Yamamoto T, Maruta K, Watanabe H, et al. Trehalose-producing operon treYZ from Arthrobacter ramosus S34[J]. Bioscience, Biotechnology, and Biochemistry, 2001,65(6):1419-1423.
pmid: 11471747 |
[15] | 王魁, 宿玲恰, 吴敬, 等. 重组 Arthrobacter ramosus S34MTSase 和 MTHase 的酶学性质及其制备海藻糖的应用条件优化[J]. 食品与发酵工业, 2017,7:1-6. |
Wang K, Su LQ, Wu J, et al. Enzymatic properties of recombinant Arthrobacter ramosus S34 MTSase and MTHase and optimization of application conditions for production of trehalose[J]. Food and Fermentation Industries, 2017,7:1-6. | |
[16] |
Chen C, Su L, Xu F, et al. Improved thermostability of maltooligosyltrehalose synthase from Arthrobacter ramosus by directed evolution and site-directed mutagenesis[J]. Journal of Agricultural and Food Chemistry, 2019,67(19):5587-5595.
doi: 10.1021/acs.jafc.9b01123 URL pmid: 31016980 |
[17] |
Dalby PA. Strategy and success for the directed evolution of enzymes[J]. Current Opinion in Structural Biology, 2011,21(4):473-480.
doi: 10.1016/j.sbi.2011.05.003 URL |
[18] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976,72(1-2):248-254.
doi: 10.1016/0003-2697(76)90527-3 URL |
[19] | McCullum EO, Williams BA, Zhang J, et al. Random mutagenesis by error-prone PCR[M]. Totowa: Humana Press, 2010. |
[20] |
Binner R, Menath V, Huber H, et al. Comparative study of stability and half-life of enzymes and enzyme aggregates implemented in anaerobic biogas processes[J]. Biomass Conversion and Biorefinery, 2011,1(1):1-8.
doi: 10.1007/s13399-010-0002-y URL |
[21] |
Fang TY, Tseng WC, Guo MS, et al. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092[J]. J Agric Food Chem, 2006,54(19):7105-7112.
doi: 10.1021/jf061318z URL pmid: 16968069 |
[22] |
Deller MC, Kong L, Rupp B. Protein stability:a crystallographer’s perspective[J]. Acta Crystallographica Section F:Structural Biology Communications, 2016,72(2):72-95.
doi: 10.1107/S2053230X15024619 URL |
[1] | QU Ge, SUN Zhou-tong. Catalytic Promiscuity-driven Redesign of Enzyme Functions [J]. Biotechnology Bulletin, 2023, 39(4): 1-9. |
[2] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[3] | YANG Jun-zhao, ZHANG Xin-rui, SUN Qing-yang, ZHENG Fei. Affecting Mechanism of Loop B3 on the Function of GH7 Endoglucanase [J]. Biotechnology Bulletin, 2023, 39(10): 281-291. |
[4] | ZHANG Chen, ZHANG Tong-tong, LIU Hai-ping. Screening and Identification of Ethylene-forming Enzymes with High Activity and Thermostability [J]. Biotechnology Bulletin, 2022, 38(11): 269-276. |
[5] | ZHANG Xue, TAN Yu-meng, JIANG Hai-xia, YANG Guang-yu. Directed Evolution of α-1,2-fucosyltransferase by a Single-cell Ultra-high-throughput Screening Method [J]. Biotechnology Bulletin, 2022, 38(1): 289-298. |
[6] | WU Jiao, YU Gui-zhen, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Improvement on the Thermostability of Target Proteins by Fusing Rubredoxin from Hyperthermophile Pyrococcus furiosus [J]. Biotechnology Bulletin, 2021, 37(10): 110-119. |
[7] | YUAN Lin, HUANG Zhao, ZENG Jing, GUO Jian-jun, ZHANG Ting, Lü Jun. Fusion of Phytase YiAPPA with the Raw-starch Binding Domain and Characterization of the Fusion Enzyme [J]. Biotechnology Bulletin, 2018, 34(3): 200-207. |
[8] | REN Tian-lei, YANG Hai-quan, XU Fei. Directed Evolution of Methyl Parathion Hydrolase Based on the Multi-dimensional Features:Molecular Structure and Bioinformatics [J]. Biotechnology Bulletin, 2018, 34(10): 194-200. |
[9] | DING Ze-hong, TIE Wei-wei, FU Li-li, HU Wei. Gene Cloning,Structure Variation,and Expression Analysis of MeTPP1 in Cassava [J]. Biotechnology Bulletin, 2018, 34(1): 97-103. |
[10] | WANG Xiao-lu, WANG Yu, LIU Jiao,ZHENG Ping,LU Fu-ping. Enhanced Methanol Utilization in Genetically Engineered Escherichia coli by Directed Evolution [J]. Biotechnology Bulletin, 2017, 33(9): 101-109. |
[11] | ZENG Jing, GUO Jian-jun, YUAN Lin, YANG Gang, CHEN Jun. Optimization of the Thermal Activity and Stability of Hyperthermophilic α-amylase ApkA [J]. Biotechnology Bulletin, 2017, 33(8): 192-198. |
[12] | HAN Chang ,SU Ling-qia, WU Jing. Recombinant Expression and Fermentation Optimization of Sulfolobus acidocaldarius ATCC 33909 Maltooligosyltrehalose Synthase in Bacillus subtilis [J]. Biotechnology Bulletin, 2017, 33(7): 162-168. |
[13] | LIU Qiang, WANG Teng-fei, WANG Jun-qing, WANG Xi-hui, WANG Rui-ming. The Expression of Trehalose Synthase Gene in Bacillus subtilis WB800n Induced by Maltose [J]. Biotechnology Bulletin, 2017, 33(3): 106-115. |
[14] | XING Wen-ting, LI Ke-ming, JIA Cai-hong, SHU Hai-yan, WANG An-bang, SUN Pei-guang, XU Gui-ying. Biology and Expression Characteristics of Trehalose-6-Phosphate Synthase Gene from Banana [J]. Biotechnology Bulletin, 2017, 33(2): 118-124. |
[15] | DING Ze-hong, FU Li-li, TIE Wei-wei, YAN Yan, HU Wei. Clone and Expression Characteristics of MeTPS9 Gene in Cassava [J]. Biotechnology Bulletin, 2017, 33(11): 84-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||