Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1305
Received:
2022-10-25
Online:
2023-04-26
Published:
2023-05-16
QU Ge, SUN Zhou-tong. Catalytic Promiscuity-driven Redesign of Enzyme Functions[J]. Biotechnology Bulletin, 2023, 39(4): 1-9.
Fig. 2 Design of artificial Kemp elimination enzymes a: Formula of Kemp elimination reaction. b: KE07, KE59 and KE70 designed from three distinct templates. KE59 is depicted using the crystallographic structure of its mutant R1 7/10H. c: HG3 designed from a xylanase
Template | Enzyme | kcat(s-1) | Km(mM-1) | kcat/Km(M-1s-1) | Reference |
---|---|---|---|---|---|
裂合酶等 | KE07 | 0.018 | 1.4 | 12.2 | [ |
KE59 | 0.29 | 1.8 | 163 | [ | |
KE70 | 0.16 | 2.1 | 78.3 | [ | |
KE07.7 | 1.37 | 0.54 | 2 590 | [ | |
KE59.13 | 9.53 | 0.16 | 60 430 | [ | |
KE70.6 | 5.0 | 0.088 | 57 300 | [ | |
木聚糖酶 | HG3 | 0.68 | 1.6 | 425.0 | [ |
HG3.17 | 700 | 3.0 | 230 000 | [ | |
P450 BM3 | P450-BM3 | 1.5 | 6 | 240 | [ |
A82F | 8.4 | 0.27 | 31 000 | [ |
Table 1 Representative mutants related to artificial Kemp elimination enzymes
Template | Enzyme | kcat(s-1) | Km(mM-1) | kcat/Km(M-1s-1) | Reference |
---|---|---|---|---|---|
裂合酶等 | KE07 | 0.018 | 1.4 | 12.2 | [ |
KE59 | 0.29 | 1.8 | 163 | [ | |
KE70 | 0.16 | 2.1 | 78.3 | [ | |
KE07.7 | 1.37 | 0.54 | 2 590 | [ | |
KE59.13 | 9.53 | 0.16 | 60 430 | [ | |
KE70.6 | 5.0 | 0.088 | 57 300 | [ | |
木聚糖酶 | HG3 | 0.68 | 1.6 | 425.0 | [ |
HG3.17 | 700 | 3.0 | 230 000 | [ | |
P450 BM3 | P450-BM3 | 1.5 | 6 | 240 | [ |
A82F | 8.4 | 0.27 | 31 000 | [ |
Fig. 3 Conformational dynamics-guided modification of enzyme TbSADH a: Schematic representation of catalyzed reaction. b: Dynamics analysis of the substrate binding pocket. c-d: Flexibility exploration of the loop region that accommodates residues A85 and I86 after(c)and before mutagenesis(d). e: Position of residue P84. f-h: Free energy landscapes(kcal/mol)of wild type(f), ΔP84/A85G(g)and P84S/I86L(h)
Fig. 4 Promiscuous reactions mediated by carboxylic acid reductase a: Redox reaction; b: intermolecular amidation; c: intermolecular esterification; d: intramolecular lactamization
[1] |
Fischer E. Einfluss der configuration auf Die wirkung der enzyme[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1894, 27(3): 2985-2993.
doi: 10.1002/cber.v27:3 URL |
[2] |
Koshland DE. Application of a theory of enzyme specificity to protein synthesis[J]. Proc Natl Acad Sci USA, 1958, 44(2): 98-104.
pmid: 16590179 |
[3] |
Ycas M. On earlier states of the biochemical system[J]. J Theor Biol, 1974, 44(1): 145-160.
pmid: 4207200 |
[4] |
Jensen RA. Enzyme recruitment in evolution of new function[J]. Annu Rev Microbiol, 1976, 30: 409-425.
pmid: 791073 |
[5] |
Baier F, Copp JN, Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence-function relationships[J]. Biochemistry, 2016, 55(46): 6375-6388.
pmid: 27802036 |
[6] | Hammer SC, et al. Design and evolution of enzymes for non-natural chemistry[J]. Curr Opin Green Sustain Chem, 2017, 7: 23-30. |
[7] |
Newton MS, Arcus VL, Gerth ML, et al. Enzyme evolution: innovation is easy, optimization is complicated[J]. Curr Opin Struct Biol, 2018, 48: 110-116.
doi: 10.1016/j.sbi.2017.11.007 URL |
[8] | 曲戈, 赵晶, 郑平, 等. 定向进化技术的最新进展[J]. 生物工程学报, 2018, 34(1): 1-11. |
Qu G, Zhao J, Zheng P, et al. Recent advances in directed evolution[J]. Chin J Biotechnol, 2018, 34(1): 1-11. | |
[9] | 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程:从定向进化到计算设计[J]. 生物工程学报, 2019, 35(10): 1843-1856. |
Qu G, Zhu T, Jiang YY, et al. Protein engineering: from directed evolution to computational design[J]. Chin J Biotechnol, 2019, 35(10): 1843-1856. | |
[10] |
Arnold FH. Innovation by evolution: bringing new chemistry to life(Nobel lecture)[J]. Angewandte Chemie Int Ed, 2019, 58(41): 14420-14426.
doi: 10.1002/anie.v58.41 URL |
[11] |
Qu G, Li AT, Acevedo-Rocha CG, et al. The crucial role of methodology development in directed evolution of selective enzymes[J]. Angew Chem Int Ed Engl, 2020, 59(32): 13204-13231.
doi: 10.1002/anie.v59.32 URL |
[12] |
Kan SBJ, Lewis RD, Chen K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life[J]. Science, 2016, 354(6315): 1048-1051.
pmid: 27885032 |
[13] |
Kan SBJ, Huang XY, Gumulya Y, et al. Genetically programmed chiral organoborane synthesis[J]. Nature, 2017, 552(7683): 132-136.
doi: 10.1038/nature24996 URL |
[14] |
Chen K, Huang XY, Kan SBJ, et al. Enzymatic construction of highly strained carbocycles[J]. Science, 2018, 360(6384): 71-75.
doi: 10.1126/science.aar4239 pmid: 29622650 |
[15] |
Zhang RK, Chen K, Huang XY, et al. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C-H functionalization[J]. Nature, 2019, 565(7737): 67-72.
doi: 10.1038/s41586-018-0808-5 |
[16] |
Rui JY, Zhao Q, Huls AJ, et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation[J]. Science, 2022, 376(6595): 869-874.
doi: 10.1126/science.abj2830 URL |
[17] |
Röthlisberger D, Khersonsky O, Wollacott AM, et al. Kemp elimination catalysts by computational enzyme design[J]. Nature, 2008, 453(7192): 190-195.
doi: 10.1038/nature06879 |
[18] |
Khersonsky O. Evolutionary optimization of computationally designed enzymes: kemp eliminases of the KE07 series[J]. J Mol Biol, 2010, 396(4): 1025-1042.
doi: 10.1016/j.jmb.2009.12.031 pmid: 20036254 |
[19] |
Khersonsky O, Kiss G, Röthlisberger D, et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59[J]. Proc Natl Acad Sci USA, 2012, 109(26): 10358-10363.
doi: 10.1073/pnas.1121063109 pmid: 22685214 |
[20] |
Khersonsky O, Röthlisberger D, Wollacott AM, et al. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution[J]. J Mol Biol, 2011, 407(3): 391-412.
doi: 10.1016/j.jmb.2011.01.041 pmid: 21277311 |
[21] |
Privett HK, Kiss G, Lee TM, et al. Iterative approach to computational enzyme design[J]. Proc Natl Acad Sci USA, 2012, 109(10): 3790-3795.
doi: 10.1073/pnas.1118082108 pmid: 22357762 |
[22] |
Blomberg R, Kries H, Pinkas DM, et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase[J]. Nature, 2013, 503(7476): 418-421.
doi: 10.1038/nature12623 |
[23] |
Li AT, Wang BJ, Ilie A, et al. A redox-mediated kemp eliminase[J]. Nat Commun, 2017, 8: 14876.
doi: 10.1038/ncomms14876 pmid: 28348375 |
[24] |
Bar-Even A, Noor E, Savir Y, et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters[J]. Biochemistry, 2011, 50(21): 4402-4410.
doi: 10.1021/bi2002289 pmid: 21506553 |
[25] |
Otten R, Pádua RAP, Bunzel HA, et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis[J]. Science, 2020, 370(6523): 1442-1446.
doi: 10.1126/science.abd3623 pmid: 33214289 |
[26] |
Martí S, Tuñón I, Moliner V, et al. Are heme-dependent enzymes always using a redox mechanism? A theoretical study of the kemp elimination catalyzed by a promiscuous aldoxime dehydratase[J]. ACS Catal, 2020, 10(19): 11110-11119.
doi: 10.1021/acscatal.0c02215 URL |
[27] |
Henzler-Wildman K, Kern D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7172): 964-972.
doi: 10.1038/nature06522 |
[28] |
Crean RM, Gardner JM, Kamerlin SCL. Harnessing conformational plasticity to generate designer enzymes[J]. J Am Chem Soc, 2020, 142(26): 11324-11342.
doi: 10.1021/jacs.0c04924 pmid: 32496764 |
[29] |
Qu G, Lonsdale R, Yao PY, et al. Methodology development in directed evolution: exploring options when applying triple-code saturation mutagenesis[J]. Chembiochem, 2018, 19(3): 239-246.
doi: 10.1002/cbic.201700562 pmid: 29314451 |
[30] |
Liu BB, et al. Conformational dynamics-guided loop engineering of an alcohol dehydrogenase: capture, turnover and enantioselective transformation of difficult-to-reduce ketones[J]. Adv Synth Catal, 2019, 361(13): 3182-3190.
doi: 10.1002/adsc.v361.13 URL |
[31] |
Liu T, Bessembayeva L, Chen J, et al. Development of an economical fermentation platform for enhanced ansamitocin P-3 production in Actinosynnema pretiosum[J]. Bioresour Bioprocess, 2019, 6: 1.
doi: 10.1186/s40643-018-0235-3 |
[32] | Qu G, Bi YX, Liu BB, et al. Unlocking the stereoselectivity and substrate acceptance of enzymes: proline-induced loop engineering test[J]. Angew Chem Int Ed Engl, 2022, 61(1): e202110793. |
[33] |
Parra-Cruz R, Jäger CM, Lau PL, et al. Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations[J]. J Phys Chem B, 2018, 122(36): 8526-8536.
doi: 10.1021/acs.jpcb.8b05926 URL |
[34] |
Ouedraogo D, Souffrant M, Vasquez S, et al. Importance of loop L1 dynamics for substrate capture and catalysis in Pseudomonas aeruginosa d-arginine dehydrogenase[J]. Biochemistry, 2017, 56(19): 2477-2487.
doi: 10.1021/acs.biochem.7b00098 pmid: 28445031 |
[35] |
Han SS, Kyeong HH, Choi JM, et al. Engineering of the conformational dynamics of an enzyme for relieving the product inhibition[J]. ACS Catal, 2016, 6(12): 8440-8445.
doi: 10.1021/acscatal.6b02793 URL |
[36] |
Cheng ZY, Cui WJ, Liu ZM, et al. A switch in a substrate tunnel for directing regioselectivity of nitrile hydratases towards α, ω-dinitriles[J]. Catal Sci Technol, 2016, 6(5): 1292-1296.
doi: 10.1039/C5CY01997D URL |
[37] |
Li GY, Yao PY, Gong R, et al. Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N[J]. Chem Sci, 2017, 8(5): 4093-4099.
doi: 10.1039/c6sc05381e pmid: 30155214 |
[38] |
Jacquet P, Hiblot J, Daudé D, et al. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase[J]. Sci Rep, 2017, 7(1): 16745.
doi: 10.1038/s41598-017-16841-0 pmid: 29196634 |
[39] |
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution[J]. Nat Rev Chem, 2019, 3(12): 687-705.
doi: 10.1038/s41570-019-0143-x |
[40] |
Qu G, Guo JG, Yang DM, et al. Biocatalysis of carboxylic acid reductases: phylogenesis, catalytic mechanism and potential applications[J]. Green Chem, 2018, 20(4): 777-792.
doi: 10.1039/C7GC03046K URL |
[41] |
Qu G, Fu MX, Zhao LL, et al. Computational insights into the catalytic mechanism of bacterial carboxylic acid reductase[J]. J Chem Inf Model, 2019, 59(2): 832-841.
doi: 10.1021/acs.jcim.8b00763 pmid: 30688451 |
[42] |
Cutlan R, de Rose S, Isupov MN, et al. Using enzyme cascades in biocatalysis: highlight on transaminases and carboxylic acid reductases[J]. Biochim Biophys Acta Proteins Proteom, 2020, 1868(2): 140322.
doi: 10.1016/j.bbapap.2019.140322 URL |
[43] |
Derrington SR, Turner NJ, France SP. Carboxylic acid reductases(CARs): an industrial perspective[J]. J Biotechnol, 2019, 304: 78-88.
doi: S0168-1656(19)30827-2 pmid: 31430498 |
[44] |
Akhtar MK, Turner NJ, Jones PR. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities[J]. Proc Natl Acad Sci USA, 2013, 110(1): 87-92.
doi: 10.1073/pnas.1216516110 pmid: 23248280 |
[45] |
Klumbys E, Zebec Z, Weise NJ, et al. Bio-derived production of cinnamyl alcohol via a three step biocatalytic cascade and metabolic engineering[J]. Green Chem, 2019, 20(3): 658-663.
doi: 10.1039/C7GC03325G pmid: 31168294 |
[46] |
Bai YF, Yin H, Bi HP, et al. De novo biosynthesis of gastrodin in Escherichia coli[J]. Metab Eng, 2016, 35: 138-147.
doi: 10.1016/j.ymben.2016.01.002 URL |
[47] |
Wood AJL, Weise NJ, Frampton JD, et al. Adenylation activity of carboxylic acid reductases enables the synthesis of amides[J]. Angew Chem Int Ed Engl, 2017, 56(46): 14498-14501.
doi: 10.1002/anie.201707918 URL |
[48] |
Lubberink M, Schnepel C, Citoler J, et al. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides[J]. ACS Catal, 2020, 10(17): 10005-10009.
doi: 10.1021/acscatal.0c02228 URL |
[49] |
Pongpamorn P, Kiattisewee C, Kittipanukul N, et al. Carboxylic acid reductase can catalyze ester synthesis in aqueous environments[J]. Angew Chem Int Ed Engl, 2021, 60(11): 5749-5753.
doi: 10.1002/anie.v60.11 URL |
[50] | Qin ZM, Zhang XH, Sang XK, et al. Carboxylic acid reductases enable intramolecular lactamization reactions[J]. Green Synth Catal, 2022, 3(3): 294-297. |
[51] |
Yuan B, Debecker DP, Wu XF, et al. One-pot chemoenzymatic deracemisation of secondary alcohols employing variants of galactose oxidase and transfer hydrogenation[J]. ChemCatChem, 2020, 12(24): 6191-6195.
doi: 10.1002/cctc.v12.24 URL |
[52] |
Huffman MA, Fryszkowska A, Alvizo O, et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir[J]. Science, 2019, 366(6470): 1255-1259.
doi: 10.1126/science.aay8484 pmid: 31806816 |
[53] |
Vilím J, Knaus T, Mutti FG. Catalytic promiscuity of galactose oxidase: a mild synthesis of nitriles from alcohols, air, and ammonia[J]. Angew Chem Int Ed Engl, 2018, 57(43): 14240-14244.
doi: 10.1002/anie.201809411 URL |
[54] |
Hyster TK. Radical biocatalysis: using non-natural single electron transfer mechanisms to access new enzymatic functions[J]. Synlett, 2020, 31(3): 248-254.
doi: 10.1055/s-0037-1611818 URL |
[55] |
Schmermund L, Jurkaš V, Özgen FF, et al. Photo-biocatalysis: biotransformations in the presence of light[J]. ACS Catal, 2019, 9(5): 4115-4144.
doi: 10.1021/acscatal.9b00656 |
[56] | Peng YZ, Wang ZG, Chen Y, et al. Photoinduced promiscuity of cyclohexanone monooxygenase for the enantioselective synthesis of α-fluoroketones[J]. Angew Chem Int Ed Engl, 2022, 61(50): e202211199. |
[57] |
Emmanuel MA, Greenberg NR, Oblinsky DG, et al. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light[J]. Nature, 2016, 540(7633): 414-417.
doi: 10.1038/nature20569 |
[58] |
Biegasiewicz KF, Cooper SJ, Gao X, et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization[J]. Science, 2019, 364(6446): 1166-1169.
doi: 10.1126/science.aaw1143 pmid: 31221855 |
[59] | 张武元, 袁波, 曲戈, 等. 光促酶催化反应设计及生物合成应用[J]. 生物学杂志, 2021, 38(5): 1-11. |
Zhang WY, Yuan B, Qu G, et al. Photobiocatalytic reaction design and its biosynthetic applications[J]. J Biol, 2021, 38(5): 1-11. | |
[60] |
Sternke M, Tripp KW, Barrick D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins[J]. Proc Natl Acad Sci USA, 2019, 116(23): 11275-11284.
doi: 10.1073/pnas.1816707116 pmid: 31110018 |
[61] |
Clifton BE, Kaczmarski JA, Carr PD, et al. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein[J]. Nat Chem Biol, 2018, 14(6): 542-547.
doi: 10.1038/s41589-018-0043-2 pmid: 29686357 |
[62] |
Kaltenbach M, Burke JR, Dindo M, et al. Evolution of Chalcone isomerase from a noncatalytic ancestor[J]. Nat Chem Biol, 2018, 14(6): 548-555.
doi: 10.1038/s41589-018-0042-3 pmid: 29686356 |
[63] |
Chen XY, Dou Z, Luo TW, et al. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum[J]. Bioresour Technol, 2022, 363: 127886.
doi: 10.1016/j.biortech.2022.127886 URL |
[64] |
Nguyen V, Wilson C, Hoemberger M, et al. Evolutionary drivers of thermoadaptation in enzyme catalysis[J]. Science, 2017, 355(6322): 289-294.
doi: 10.1126/science.aah3717 pmid: 28008087 |
[65] |
Zeng B, Zhou YH, Yi ZW, et al. Highly thermostable and promiscuous β-1, 3-xylanasen designed by optimized ancestral sequence reconstruction[J]. Bioresour Technol, 2021, 340: 125732.
doi: 10.1016/j.biortech.2021.125732 URL |
[66] | Song SY, Jiang YY, Chen RD, et al. Whole-cell biotransformation of penicillin G by a three-enzyme co-expression system with engineered deacetoxycephalosporin C synthase[J]. Chembiochem, 2022, 23(11): e202200179. |
[67] |
Schulz L, Guo Z, Zarzycki J, et al. Evolution of increased complexity and specificity at the dawn of form I Rubiscos[J]. Science, 2022, 378(6616): 155-160.
doi: 10.1126/science.abq1416 pmid: 36227987 |
[68] |
Sandoval BA, Hyster TK. Emerging strategies for expanding the toolbox of enzymes in biocatalysis[J]. Curr Opin Chem Biol, 2020, 55: 45-51.
doi: S1367-5931(19)30150-4 pmid: 31935627 |
[69] |
Wittwer M, Markel U, Schiffels J, et al. Engineering and emerging applications of artificial metalloenzymes with whole cells[J]. Nat Catal, 2021, 4(10): 814-827.
doi: 10.1038/s41929-021-00673-3 |
[70] |
Bloomer BJ, Clark DS, Hartwig JF. Progress, challenges, and opportunities with artificial metalloenzymes in biosynthesis[J]. Biochemistry, 2022. DOI: 10.1021/acs.biochem.1c00829.
doi: 10.1021/acs.biochem.1c00829 |
[71] |
Drienovská I, Mayer C, Dulson C, et al. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue[J]. Nat Chem, 2018, 10(9): 946-952.
doi: 10.1038/s41557-018-0082-z pmid: 29967395 |
[72] |
Burke AJ, Lovelock SL, Frese A, et al. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism[J]. Nature, 2019, 570(7760): 219-223.
doi: 10.1038/s41586-019-1262-8 |
[73] |
Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering[J]. Nat Methods, 2019, 16(8): 687-694.
doi: 10.1038/s41592-019-0496-6 pmid: 31308553 |
[1] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[2] | ZHANG Xue, TAN Yu-meng, JIANG Hai-xia, YANG Guang-yu. Directed Evolution of α-1,2-fucosyltransferase by a Single-cell Ultra-high-throughput Screening Method [J]. Biotechnology Bulletin, 2022, 38(1): 289-298. |
[3] | CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution [J]. Biotechnology Bulletin, 2021, 37(3): 84-91. |
[4] | CAI Yu-zhen, BAI Qiao-yan, SU Min, TANG Liang-hua. Strategies and Advances in the Molecular Modification of Substrate Binding Pocket of Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 173-180. |
[5] | REN Tian-lei, YANG Hai-quan, XU Fei. Directed Evolution of Methyl Parathion Hydrolase Based on the Multi-dimensional Features:Molecular Structure and Bioinformatics [J]. Biotechnology Bulletin, 2018, 34(10): 194-200. |
[6] | WANG Xiao-lu, WANG Yu, LIU Jiao,ZHENG Ping,LU Fu-ping. Enhanced Methanol Utilization in Genetically Engineered Escherichia coli by Directed Evolution [J]. Biotechnology Bulletin, 2017, 33(9): 101-109. |
[7] | GUO Yuan, ZHAO Zhong-lin. Advances on Applications of Synthetic Biology and Directed Evolution in Microbial Systems [J]. Biotechnology Bulletin, 2017, 33(1): 76-82. |
[8] | ZHANG Xue-ling CHEN Xiao-li LI He. Determination of Enzymatic Properties of a Laccase Lac1338,and Effects of Directed Mutants on the Degradations of Different Dyes [J]. Biotechnology Bulletin, 2016, 32(7): 170-177. |
[9] | Lü Yongkun, Du Guocheng, Chen Jian, Zhou Jingwen. Advances in Synthetic Biology [J]. Biotechnology Bulletin, 2015, 31(4): 134-148. |
[10] | Zhang Congcong, Chen Caixia, Chen Xiao, Wen Ya, Yan Liming, Tao Yong. Advances in Production of N-acetyl-D-neuraminic Acid by #br#Whole-cell Biocatalysis [J]. Biotechnology Bulletin, 2015, 31(4): 175-183. |
[11] | Wang Xi,Duan Shenglin,Xiong Shuli,Zheng Guilan,Zhang Guiyou,Wang Hongzhong. Application of Auto-induction System in the Synthesis of 2’-deoxycytidine [J]. Biotechnology Bulletin, 2014, 0(11): 225-232. |
[12] | Liu Miao, Wang Yonghui, Lu Qun. Advances in Directed Research of VD3 Hydroxylase [J]. Biotechnology Bulletin, 2014, 0(1): 27-31. |
[13] | Shao Min, Li Changfu, Ge Zhenglong, Zhou Hefeng. Directed evolution of β-glucanase from Bacillus subtilis by Error-prone PCR [J]. Biotechnology Bulletin, 2013, 0(12): 141-145. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 887
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 574
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||