Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 110-119.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0060
Previous Articles Next Articles
WU Jiao(), YU Gui-zhen, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong()
Received:
2021-01-15
Online:
2021-10-26
Published:
2021-11-12
Contact:
ZOU Zhu-rong
E-mail:2535736946@qq.com;zouzr09@sina.com
WU Jiao, YU Gui-zhen, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Improvement on the Thermostability of Target Proteins by Fusing Rubredoxin from Hyperthermophile Pyrococcus furiosus[J]. Biotechnology Bulletin, 2021, 37(10): 110-119.
名称Name | 序列Sequence(5'-3') | 备注Remarks |
---|---|---|
Rub-F2 | TCTATGATGAAGACGCTGGGATCCTGACAATGGTATTTCACCTGGAACTAAGTTTGAG | |
Rub-R2 | GCACCACAAATAGGACAGACCCAATCATCTGGTAGCTCCTCAAACTTAGTTCCAGGTG | |
Rub-F1Sa | GGCAGTCGACGCTAAGTGGGTTTGTAAGATATGCGGATACATCTATGATGAAGACGCTG | Sal I |
Rub-R1Xh | GCGACTCGAGATCTTCTAACTTTTCAAATTCACTCTTAGGAGCACCACAAATAGGACAG | Xho I |
JcAPX1-5Nd | GCGGTCATATGGCTAAGAACTATCCAAAAG | Nde I |
PsPtxD-5Nd | GCTATCATATGGCTCTGCCGAAACTCGT | Nde I |
EcMetA-5Nd | GCGTTCATATGCCGATTCGTGTGCC | Nde I |
Table 1 Primers used in this study
名称Name | 序列Sequence(5'-3') | 备注Remarks |
---|---|---|
Rub-F2 | TCTATGATGAAGACGCTGGGATCCTGACAATGGTATTTCACCTGGAACTAAGTTTGAG | |
Rub-R2 | GCACCACAAATAGGACAGACCCAATCATCTGGTAGCTCCTCAAACTTAGTTCCAGGTG | |
Rub-F1Sa | GGCAGTCGACGCTAAGTGGGTTTGTAAGATATGCGGATACATCTATGATGAAGACGCTG | Sal I |
Rub-R1Xh | GCGACTCGAGATCTTCTAACTTTTCAAATTCACTCTTAGGAGCACCACAAATAGGACAG | Xho I |
JcAPX1-5Nd | GCGGTCATATGGCTAAGAACTATCCAAAAG | Nde I |
PsPtxD-5Nd | GCTATCATATGGCTCTGCCGAAACTCGT | Nde I |
EcMetA-5Nd | GCGTTCATATGCCGATTCGTGTGCC | Nde I |
Fig.1 PCR synthesis of the Rub gene and construction of its fusion expression vectors A:Rub gene PCR;B,C,D:Colony PCR identification of vector pET(JcAPX1-Rub),pET(PsPtxD-Rub),and pET(EcMetA-Rub),respectively. M:DNA marker. Arrows indicate the target PCR bands
名称 Name | 氨基酸数目 Number of amino acids | 分子量 Molecular weight/kD | 等电点 pI | pH 7.0条件下的净电荷 Net charge at pH 7.0 |
---|---|---|---|---|
Rub | 53(+LE) | 6.14 | 4.02 | -9 |
JcAPX1 | 258 | 28.56 | 5.76 | -10 |
JcAPX1-Rub | 313 | 34.7 | 5.13 | -19 |
EcMetA | 317 | 36.79 | 5.36 | -17 |
EcMetA-Rub | 372 | 42.9 | 4.92 | -26 |
PsPtxD | 345 | 37.55 | 5.67 | -11 |
PsPtxD-Rub | 400 | 43.65 | 5.06 | -20 |
Table 2 Properties of Rub,target proteins,and their fusion forms
名称 Name | 氨基酸数目 Number of amino acids | 分子量 Molecular weight/kD | 等电点 pI | pH 7.0条件下的净电荷 Net charge at pH 7.0 |
---|---|---|---|---|
Rub | 53(+LE) | 6.14 | 4.02 | -9 |
JcAPX1 | 258 | 28.56 | 5.76 | -10 |
JcAPX1-Rub | 313 | 34.7 | 5.13 | -19 |
EcMetA | 317 | 36.79 | 5.36 | -17 |
EcMetA-Rub | 372 | 42.9 | 4.92 | -26 |
PsPtxD | 345 | 37.55 | 5.67 | -11 |
PsPtxD-Rub | 400 | 43.65 | 5.06 | -20 |
Fig. 2 Rub fusion enhances the soluble expressions of target proteins JcAPX1,PsPtxD,and EcMetA in E. coli SDS-PAGE analysis(A,D,and G),protein band densitometry-based solubility estimation(B,E,and H),and color visualization of bacterial cell lysate(C,F,and I)were used to pairwise compare the soluble expressions of recombinant target proteins and their Rub-fusion forms,i.e. A-C:JcAPX1 vs. JcAPX1-Rub(37℃/4 h induction);D-F:PsPtxD vs. PsPtxD-Rub(25℃/overnight induction);G-I:EcMetA vs. EcMetA-Rub(30℃/8 h induction). Arrows indicate the recombinant proteins. M:Protein molecular weight marker. UI:Cell lysate of the uninduced bacteria. T:Cell lysate of the induced bacteria. P:The pellet fraction of “T”. S:The soluble fraction of “T”
Fig. 3 Rub fusion improves the thermostability of target proteins JcAPX1,PsPtxD,and EcMetA SDS-PAGE analysis(A,C,and E)and protein band densitometry-based solubility estimation(B,D,and F)were used to pairwise compare the heat-induced solubility changes(i.e. thermostability)of recombinant target proteins and their Rub-fusion forms,i.e. A,B:JcAPX1 vs. JcAPX1-Rub;C,D:PsPtxD vs. PsPtxD-Rub;E,F:EcMetA vs. EcMetA-Rub. Arrows indicate the recombinant proteins. M:Protein molecular weight marker. CK:Untreated sample. S,P:The soluble,pellet fraction of each heat-treated sample,respectively
Fig. 4 Rub fusion improves the heat tolerance of the in vitro enzymatic activities of JcAPX1 and PsPtxD The heat-induced enzymatic activity changes of JcAPX1 and its Rub fusion JcAPX1-Rub were compared by the analyses using in gel activity staining(A)and spectrometric assay(B). Likewise,the spectrometric assay was also used for the suite of PsPtxD and PsPtxD-Rub(C). CK:Untreated sample;S,P:the soluble,pellet fraction of each heat-treated sample,respectively
Fig. 5 Influence of Rub fusion on the growth of EcMetA recombinant E. coli strain under heat stress by bacterial dot plating test with serial dilution
[1] |
Terpe K. Overview of bacterial expression systems for heterologous protein production:from molecular and biochemical fundamentals to commercial systems[J]. Appl Microbiol Biotechnol, 2006, 72(2):211-222.
pmid: 16791589 |
[2] |
Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags[J]. Curr Opin Biotechnol, 2006, 17(4):353-358.
doi: 10.1016/j.copbio.2006.06.003 URL |
[3] |
Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expr Purif, 2005, 43(1):1-9.
doi: 10.1016/j.pep.2005.03.016 URL |
[4] |
Zhang M, Gong M, Yang Y, et al. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners[J]. Biotechnol Lett, 2015, 37(4):891-898.
doi: 10.1007/s10529-014-1754-4 URL |
[5] |
Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites[J]. Biotechnol Adv, 2014, 32(2):308-315.
doi: 10.1016/j.biotechadv.2013.10.012 URL |
[6] |
Gur E, Biran D, Gazit E, et al. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures[J]. Mol Microbiol, 2002, 46(5):1391-1397.
doi: 10.1046/j.1365-2958.2002.03257.x URL |
[7] |
Panchuk II, Volkov RA, Schöffl F. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis[J]. Plant Physiol, 2002, 129(2):838-853.
pmid: 12068123 |
[8] |
Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, et al. Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo[J]. Plant Physiol, 2001, 127(3):1053-1064.
pmid: 11706186 |
[9] | 刘延娟, 李旭娟, 袁航, 等. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7):115-123. |
Liu YJ, Li XJ, Yuan H, et al. Fusing the acyl carrier protein enhances the solubility and thermostability of the recombinant proteins in Escherichia coli[J]. China Biotechnol, 2017, 37(7):115-123. | |
[10] |
Park SM, Jung HY, Chung KC, et al. Stress-induced aggregation profiles of GST-α-synuclein fusion proteins:role of the C-terminal acidic tail of α-synuclein in protein thermosolubility and stability[J]. Biochemistry, 2002, 41(12):4137-4146.
doi: 10.1021/bi015961k URL |
[11] |
Zhang M, Li X, Yang Y, et al. An acidified thermostabilizing mini-peptide derived from the carboxyl extension of the larger isoform of the plant Rubisco activase[J]. J Biotechnol, 2015, 212:116-124.
doi: 10.1016/j.jbiotec.2015.08.021 URL |
[12] | Shah V, Pierre B, Kirtadze T, et al. Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein[J]. Protein Eng Des Sel, 2017, 30(4):281-290. |
[13] |
Walper SA, Battle SR, Lee P, et al. Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection[J]. Anal Biochem, 2014, 447:64-73.
doi: 10.1016/j.ab.2013.10.031 pmid: 24184358 |
[14] |
Luke JM, Carnes AE, Sun P, et al. Thermostable tag(TST)protein expression system:engineering thermotolerant recombinant proteins and vaccines[J]. J Biotechnol, 2011, 151(3):242-250.
doi: 10.1016/j.jbiotec.2010.12.011 URL |
[15] |
Śpibida M, Krawczyk B, Zalewska-Piątek B, et al. Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets[J]. Appl Microbiol Biotechnol, 2018, 102(2):713-721.
doi: 10.1007/s00253-017-8560-6 pmid: 29103168 |
[16] |
Wang QL, Xue YM, Wu XX. Characterization of a novel thermostable chitin-binding domain and its application in immobilization of a multifunctional hemicellulase[J]. J Agric Food Chem, 2013, 61(12):3074-3081.
doi: 10.1021/jf3041275 URL |
[17] |
Chandrayan SK, Prakash S, Ahmed S, et al. Hyperthermophile protein behavior:partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding[J]. PLoS One, 2014, 9(3):e80014.
doi: 10.1371/journal.pone.0080014 URL |
[18] |
Bougault CM, Eidsness MK, Prestegard JH. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms[J]. Biochemistry, 2003, 42(15):4357-4372.
doi: 10.1021/bi027264d URL |
[19] |
Richie KA, Teng Q, Elkin CJ, et al. 2D1 H and 3D1 H-15 N NMR of zinc-rubredoxins:Contributions of the β-sheet to thermostability[J]. Protein Sci, 1996, 5(5):883-894.
pmid: 8732760 |
[20] | 袁航, 罗著, 杨玉梅, 等. 土壤假单胞菌亚磷酸盐脱氢酶的基因克隆和原核表达及其酶活分析[J]. 生物技术通报, 2018, 34(8):130-137. |
Yuan H, Luo Z, Yang YM, et al. Gene cloning, prokaryotic expression and enzymatic analysis of the phosphite dehydrogenase from soil Pseudomonas species[J]. Biotechnol Bull, 2018, 34(8):130-137. | |
[21] |
Li Y, Liu PP, Takano T, et al. A chloroplast-localized rubredoxin family protein gene from Puccinellia tenuiflora(PutRUB)increases NaCl and NaHCO3 tolerance by decreasing H2O2 accumulation[J]. Int J Mol Sci, 2016, 17(6):804.
doi: 10.3390/ijms17060804 URL |
[1] | Zeng Jing, Guo Jianjun, Qiu Xiaozhong, Wang Xianzhuo, Yuan Lin. Advances on Hyperthermophiles and Mechanism of Their Thermal Adaptation [J]. Biotechnology Bulletin, 2015, 31(9): 30-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||