Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 84-91.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0949
Previous Articles Next Articles
ZENG Fu-yuan1,2(), SU Ze-hui2, ZHOU Shi-hui1,2, XIE Miao2, PANG Huan-ying1,2()
Received:
2020-07-29
Online:
2021-05-26
Published:
2021-06-11
Contact:
PANG Huan-ying
E-mail:2468806043@qq.com;phying1218@163.com
ZENG Fu-yuan, SU Ze-hui, ZHOU Shi-hui, XIE Miao, PANG Huan-ying. Prokaryotic Expression of the PEPCK Protein of Vibrio alginolyticus and Identification of Its Acetylation and Succinylation[J]. Biotechnology Bulletin, 2021, 37(5): 84-91.
Fig. 3 SDS-PAGE analysis of PEPCK protein M : 26616 protein marker. 1 : pET-28a (uninduced). 2 : pET-28a (induced). 3 : pET-28a-pepck (uninduced). 4 : pET-28a-pepck (induced)
Fig. 4 Influence of temperature on the expression of PEPCK protein M : 26616 protein Marker. 1: Total mycoprotein induced at 28℃. 2-3 : Soluble proteins and inclusion body proteins induced at 28℃. 4 : Total mycoprotein induced at 37℃. 5-6 : Soluble and inclusion body proteins induced at 37℃
Fig. 5 Influence of IPTG concentration on the expression of PEPCK protein M : 26616 protein marker. 1-6 : The induced concentration of IPTG is 0, 0.2, 0.4, 0.6, 0.8 and 1.0 mmol/L, respectively
Fig. 6 Influence of induction time on the expression of PEPCK protein M : 26616 protein marker. 1-6 : The induction time is 0 h, 2 h, 4 h, 6 h, 8 h and 10 h, respectively
Fig. 7 Purification of PEPCK protein M : 26616 protein marker. 1: Unpurified. 2: The liquid of flowing through. 3-4: The eluent concentration was 50 and 250 mmol/L, respectively
Fig. 8 Acetylation and succinylation identification of PEPCK protein (A) M : 26616 protein marker. 1-2: PEPCK protein (The primary antibody used in the western blot was Anti-acetyllysine mouse mAb, and horseradish peroxidase conjugated goat Anti-mouse IgG was used as the secondary antibody) . (B) M : 26616 protein marker. 3-4: PEPCK protein (The primary antibody used in the Western blot was anti- succinyllysine mouse mAb, and horseradish peroxidase conjugated goat anti- mouse IgG was used as the secondary antibody)
[1] |
Bandyopadhyay GK, Lu M, Avolio E, et al. Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance[J]. Diabetes, 2015,64(1):104-116.
doi: 10.2337/db13-1747 pmid: 25048197 |
[2] |
Zhang HB, Chen Q, Jiao T, et al. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression[J]. PLoS One, 2014,9(2):e89552.
doi: 10.1371/journal.pone.0089552 URL |
[3] | Aich S, Delbaere LT. Phylogenetic study of the evolution of PEP-carboxykinase[J]. Evol Bioinform Online, 2007,3:333-340. |
[4] |
Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase(GTP):the gene and the enzyme[J]. Adv Enzymol Relat Areas Mol Biol, 1994,69:203-281.
pmid: 7817869 |
[5] |
Chiba Y, Kamikawa R, Nakada-Tsukui K, et al. Discovery of PPi-type phosphoenolpyruvate carboxykinase genes in eukaryotes and bacteria[J]. J Biol Chem, 2015,290(39):23960-23970.
doi: 10.1074/jbc.M115.672907 URL |
[6] | 林嘉颖, 袁源, 刘新光. 磷酸烯醇式丙酮酸羧激酶1(PCK1)的研究进展[J]. 生命的化学, 2019,39(4):637-642. |
Lin JY, Yuan Y, Liu XG. The research progress of PCK1[J]. Chemistry of Life, 2019,39(4):637-642. | |
[7] |
Saini S, Kumar Ghosh A, Singh R, et al. Glucose deprivation induced upregulation of phosphoenolpyruvate carboxykinase modulates virulence in Leishmania donovani[J]. Mol Microbiol, 2016,102(6):1020-1042.
doi: 10.1111/mmi.2016.102.issue-6 URL |
[8] | Guo HZ, Xu GW, Wang B, et al. Phosphoenolpyruvate carboxykinase is involved in antiviral immunity against Bombyx mori nucleopoly-hedrovirus[J]. Guangxi Sericulture, 2019,56(2):68. |
[9] |
Liu K, Yu J, Russell DG. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages[J]. Microbiology, 2003,149:1829-1835.
doi: 10.1099/mic.0.26234-0 URL |
[10] | 柏雪莲, 王志强, 刁兴华, 等. 结核杆菌PEPCK免疫作用的初步研究[J]. 滨州医学院学报, 2009,32(1):1-3. |
Bai XL, Wang ZQ, Diao XH, et al. The primary research on phosphoenolpyruvate carboxykinase immune effect of Mycobacterium tuberculosi[J]. Journal of Binzhou Medical University, 2009,32(1):1-3. | |
[11] | 柏雪莲, 刘克义, 于进芝, 等. 敲除pckA基因的结核杆菌引起的免疫反应的研究[J]. 微生物学杂志, 2005(6):19-22. |
Bai XL, Liu KY, Yu JZ, et al. Histological and immune responses induced by pckA gene mutated Mycobacterium bovis BCG[J]. Journal of Microbiology, 2005(6):19-22. | |
[12] | 吕斌娜, 梁文星. 蛋白质乙酰化修饰研究进展[J]. 生物技术通报, 2015,31(4):166-174. |
Lü BN, Liang WX. The research progress of protein acetylation[J]. Biotechnology Bulletin, 2015,31(4):166-174. | |
[13] | 李阳, 赵世民. 乙酰化修饰调节代谢[J]. 复旦学报:医学版, 2011,38(4):283-286. |
Li Y, Zhao SM. Acetylation expands its territory into metabolism[J]. Fudan University Journal of Medical Sciences, 2011,38(4):283-286. | |
[14] |
Wang QJ, Zhao SM, Zhao GP, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J]. Science, 2010,327(5968):1004-1007.
doi: 10.1126/science.1179687 URL |
[15] | 桑昱. 蛋白质乙酰化修饰参与鼠伤寒沙门菌毒力的调控[D]. 上海:上海交通大学, 2016. |
Sang Y. Protein acetylation is involved in Salmonella enterica serovar Typhimurium virulence[D]. Shanghai:Shanghai Jiao Tong University, 2016. | |
[16] | 张瑞良. 基于蛋白质组学与乙酰化修饰组学对沙门菌耐药机制研究[D]. 合肥:安徽农业大学, 2019. |
Zhang RL. Study on the resistance mechanism of Salmonella based on proteomics and protein acetylation modification[D]. Hefei:Anhui Agricultural University, 2019. | |
[17] |
Papanicolaou KN, O’Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse:recent progress in post-translational modifications of lysine in mitochondria[J]. Front Physiol, 2014,5:301.
doi: 10.3389/fphys.2014.00301 pmid: 25228883 |
[18] |
Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nat Chem Biol, 2011,7(1):58-63.
doi: 10.1038/nchembio.495 URL |
[19] |
Gibson GE, Xu H, et al. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines[J]. Neurochem, 2015,134(1):86-96.
doi: 10.1111/jnc.13096 URL |
[20] | Chen H, Xu H, Potash S, et al. Mild metabolic perturbations alter succinylation of mitochondrial proteins[J]. Neurosci Res, 2017,95(11):2244-2252. |
[21] |
Zhang Y, Bharathi SS, Rardin MJ, et al. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain[J]. Biol Chem, 2017,292(24):10239-10249.
doi: 10.1074/jbc.M117.785022 URL |
[22] |
Xie LX, Liu W, Li QM, et al. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology[J]. Proteome Res, 2015,14(1):107-119.
doi: 10.1021/pr500859a URL |
[23] |
Luo P, He X, Wang Y, et al. Comparative genomic analysis of six new-found integrative conjugative elements(ICEs)in Vibrio alginolyticus[J]. BMC Microbiol, 2016,16(1):79-89.
doi: 10.1186/s12866-016-0692-9 URL |
[24] | 余庆, 李菲, 王一兵, 等. 广西北部湾大宗海水养殖鱼类卵形鲳鲹感染溶藻弧菌及其致病性研究[J]. 广西科学, 2018,25(1):68-73. |
Yu Q, Li F, Wang YB, et al. Isolation, Identification and Pathogenicity of Vibrio alginolyticus from Marine Cultured Trachinotus ovatus in Beibu Gulf, Guangxi[J]. Guangxi Sciences, 2018,25(1):68-73. | |
[25] |
Liu CH, Cheng W, Hsu JP, et al. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing[J]. Dis Aquat Organ, 2004,61(1-2):169-174.
doi: 10.3354/dao061169 URL |
[26] | 张颖雪, 苏洁, 樊景凤, 等. 海水养殖贝类弧菌病流行暴发及其环境影响因素研究进展[J]. 海洋环境科学, 2020,39(3):480-487. |
Zhang YX, Su J, Fan JF, et al. Outbreaks of vibriosis in mariculture shellfish and its research progress[J]. Marine Environmental Science, 2020,39(3):480-487. | |
[27] |
Pang HY, Chen LM, Hoare R, et al. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides[J]. Vaccine, 2016,34(9):1225-1231.
doi: 10.1016/j.vaccine.2015.11.001 URL |
[28] | 郑玉琦. 溶藻弧菌耐四种抗生素的蛋白质组学研究[D]. 湛江:广东海洋大学, 2011. |
Zheng YQ. Proteomic analysis of Vibrio alginolyticus in response to four types of antibiotics[D]. Zhanjiang:Guangdong Ocean University, 2011. | |
[29] | Pang HY, Li WX, Zhang WJ, et al. Acetylome profiling of Vibrio alginolyticus reveals its role in bacterial virulence[J]. Proteomics, 2020,211:103543. |
[30] |
Pan JY, Chen R, Li CC, et al. Global analysis of protein lysine succinylation profiles and their overlap with lysine acetylation in the marine bacterium Vibrio parahemolyticus[J]. Proteome Res, 2015,14(10):4309-4318.
doi: 10.1021/acs.jproteome.5b00485 URL |
[31] | 李家冬, 王弘. 重组蛋白正确折叠与修饰的提高策略[J]. 生物工程学报, 2017,33(4):591-600. |
Li JD, Wang H. Strategies to improve the folding and modification of recombinant proteins[J]. Chinese Journal of Biotechnology, 2017,33(4):591-600. | |
[32] | Schumann W. Function and regulation of temperature-inducible bacterial proteins on the cellular metabolism[J]. Advances in Biochemical Enginrreing/Biotechnology, 2000,67:1-33. |
[33] | Li ZF, Su LQ, Wang L, et al. Novel insight into the secretory expression of recombinant enzymes in Escherichia coli[J]. Proc Biochem, 2014,49(4):599-603. |
[34] |
Cheng J, Wu D, Chen S, et al. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21(DE3)[J]. J Agric Food Chem, 2011,59(8):3797-3802.
doi: 10.1021/jf200033m URL |
[35] | 彭传林, 魏川川, 吴建伟, 等. 家蝇抗真菌肽MAF-1原核表达条件优化及活性验证[J]. 中国公共卫生, 2015,31(11):1420-1423. |
Peng CL, Wei CC, Wu JW, et al. Optimization of expression conditions and activity verification of Musca domestica antifungal peptide-1 in prokaryotic cells[J]. Chinese Journal of Public Health, 2015,31(11):1420-1423. | |
[36] | 陈立明, 庞欢瑛, 等. 溶藻弧菌dtd基因的克隆及原核表达条件优化[J]. 广东海洋大学学报, 2014,34(3):52-57. |
Chen LM, Pang HY, et al. Cloning and optimization of prokaryotic expression of D-Tyr-tRNATyr deacylase(DTD)gene from Vibrio alginolyticus[J]. Journal of Guangdong Ocean University, 2014,34(3):52-57. | |
[37] | 马敏. 基于质谱技术的蛋白质翻译后修饰研究[D]. 天津:天津大学, 2017. |
Ma M. Mass spectrometry-based investigation of protein post-translational modifications[D]. Tianjin:Tianjin University, 2017. | |
[38] | 王义平, 雷群英. 赖氨酸乙酰化调控细胞代谢的机制[J]. 生命科学, 2018,30(4):447-454. |
Wang YP, Lei QY. Regulation of cell metabolism by lysine acetylation[J]. Chinese Bulletin of Life Sciences, 2018,30(4):447-454. | |
[39] | 赖木兰, 陈雪岚. 蛋白质赖氨酸乙酰化修饰对中间代谢的调控研究[J]. 中国生物工程杂志, 2017,37(9):126-133. |
Lai ML, Chen XL. Devolopment of regulation of protein lysine acetylation on intermediate metabolism[J]. China Biotechnology, 2017,37(9):126-133. | |
[40] |
Lin RT, Zhou X, Huang W, et al. Acetylation control of cancer cell metabolism[J]. Current Pharmaceutical Design, 2014,20(15):2627-2633.
doi: 10.2174/13816128113199990487 URL |
[41] | Liimatta K, Flaherty E, Ro G, et al. A putative acetylation system in Vibrio cholerae modulates virulence in arthropod hosts[J]. Appl Environ Microbiol, 2018,84(21):e01113-18. |
[42] |
Jers C, Ravikumar V, Lezyk M, et al. The global acetylome of the human pathogen Vibrio cholera V52 reveals lysine acetylation of major transcriptional regulators[J]. Front Cell Infect Microbiol, 2018,7:537.
doi: 10.3389/fcimb.2017.00537 URL |
[43] | 李蓉, 陈雪岚. 蛋白质赖氨酸残基的琥珀酰化修饰[J]. 中国生物化学与分子生物学报, 2018,34(12):1272-1279. |
Li R, Chen XL. Succinylation modification of lysine residues of proteins[J]. Chinese Journal of Biochemistry and Molecular Biology, 2018,34(12):1272-1279. | |
[44] |
Pan JY, Ye ZC, Cheng ZY, et al. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus[J]. Proteome Res, 2014,13(7):3294-3302.
doi: 10.1021/pr500133t URL |
[45] | 杨雨薇, 尚爽, 胡卓伟, 等. 赖氨酸乙酰化的研究进展及应用[J]. 药学学报, 2019,54(5):778-787. |
Yang YW, Shang S, Hu ZW, et al. Advances and applications of lysine acetylation[J]. Acta Pharmaceutica Sinica, 2019,54(5):778-787. | |
[46] |
Zhang ZH, Tan MJ, Xie ZY, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nat Chem Biol, 2011,7(Suppl):58-63.
doi: 10.1038/nchembio.495 URL |
[47] |
Rina B, Krishna P, Alla S, et al. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli[J]. J Mol Biol, 2004,342(2):383-401.
doi: 10.1016/j.jmb.2004.07.020 URL |
[48] | 沈佳佳, 闻浩. 蛋白质赖氨酸琥珀酰化修饰研究进展[J]. 医学研究生学报, 2016,29(3):332-336. |
Shen JJ, Wen H. The research progress of protein lysine succinylation[J]. Journal of Medical Postgraduates, 2016,29(3):332-336. |
[1] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[2] | SUO Qing-qing, WU Nan, YANG Hui, LI Li, WANG Xi-feng. Prokaryotic Expression,Antibody Preparation and Application of Rice Caffeoyl Coenzyme A-O-methyltransferase Gene [J]. Biotechnology Bulletin, 2022, 38(8): 135-141. |
[3] | QIN Xue-jing, WANG Yu-han, CAO Yi-bo, ZHANG Ling-yun. Prokaryotic Expression and Preparation of Polyclonal Antibody of PwHAP5 Gene in Picea wilsonii [J]. Biotechnology Bulletin, 2022, 38(8): 142-149. |
[4] | WANG Guang-li, FAN Chan, WANG Hui, LU Hui-fang, XIA Ling-yin, HUANG Jian, MIN Xun. Prokaryotic Expression,Purification,Identification,and Polyclonal Antibody Preparation of Vibrio cholerae Hemolysin HlyA [J]. Biotechnology Bulletin, 2022, 38(7): 269-277. |
[5] | WANG Qiao-ju, HU Yu-meng, WEN Ya-ya, SONG Li, MENG Chuang, PAN Zhi-ming, JIAO Xin-an. Expression and Activity Identification of SARS-CoV-2 S1 Protein [J]. Biotechnology Bulletin, 2022, 38(3): 157-163. |
[6] | SHEN Jun-qiang, ZHANG Li-ping, YU Rui-ming, WANG Yong-lu, PAN Li, LIU Xia, LIU Xin-sheng. Porcine Kobuvirus Structural Proteins VP0 and VP1 Prokaryotic Expression and Establishment of Indirect ELISA Method [J]. Biotechnology Bulletin, 2022, 38(10): 243-253. |
[7] | FAN Chen-long, DING Yu. Molecular Cloning and Functional Verification of Histone Deacetylase Gene cobB in Vibrio alginolyticus [J]. Biotechnology Bulletin, 2021, 37(8): 195-202. |
[8] | SHAN Cao-mei, YE Lei, ZHANG Lian-hu, KUANG Wei-gang, SUN Xiao-tang, MA Jian, CUI Ru-qiang. Cloning,and Functional Analysis of Gene OsRAI1 Resistant to Hirschmanniella mucronate in Rice [J]. Biotechnology Bulletin, 2021, 37(7): 146-155. |
[9] | ZHANG Xi-xi, ZHANG Yi-qing, LI Yu-lin, HAN Xiao, WANG Guo-qiang, WANG Xiao-jun, WANG Xu-dong, WANG Yun-long. Prokaryotic Expression,Purification and Application of N Protein C-terminal Recombinant Protein in Novel Coronavirus(SARS-CoV-2) [J]. Biotechnology Bulletin, 2021, 37(5): 92-97. |
[10] | BAI Fu-mei, LI Zhi-min, WANG Xiao-qin, HU Zi-wei, BAO Ling-ling, LI Zhi-min. Biochemical Characterization and Structural Analysis of N-acetylornithine Transaminase from Synechocystis sp. PCC6803 [J]. Biotechnology Bulletin, 2021, 37(5): 98-107. |
[11] | QU Huan, LI Cheng, CHEN Rui, LIAO Yi-jie, CAO San-jie, WEN Yi-ping, YAN Qi-gui, HUANG Xiao-bo. Truncated Expression of the S1-CTD Fragment of Porcine Deltacoronavirus and Establishment of an Indirect ELISA for Detecting Its Antibody [J]. Biotechnology Bulletin, 2021, 37(5): 273-280. |
[12] | PENG Li-zhong, ZHANG Peng, ZHOU Wen-wen, ZENG Xu-hui, ZHANG Xiao-ning. Preparation and Multi-purpose Validation of Sperm-specific Protein Cabs1 Polyclonal Antibody [J]. Biotechnology Bulletin, 2021, 37(3): 261-270. |
[13] | HE Yang, YU Qiao-ling, WANG Jun, QIN Chuan-jie, LI Hua-tao. Advances in Prokaryotic Expression Gene of Tilapia [J]. Biotechnology Bulletin, 2021, 37(2): 195-202. |
[14] | TANG Lu, DONG Li-ping, YIN Mo-li, LIU Lei, DONG Yuan, WANG Hui-yan. Preparation and Identification of a Novel FGF20 Monoclonal Antibody [J]. Biotechnology Bulletin, 2021, 37(10): 179-185. |
[15] | DAI Wen-shuang, LIU Hui-yun, DU Qing-guo, ZOU Cheng, WANG Ke. Effect of Histone Deacetylase Inhibitor(HDACi)on CRISPR Editing Efficiency of Wheat and Transcriptomics Analysis [J]. Biotechnology Bulletin, 2021, 37(1): 2-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||