Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 174-181.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1079
Previous Articles Next Articles
ZHAO Hong-yuan1(), WANG Zhao1, CHENG Wen-yu1(), MA Ning-ning1, LI Man2, WEI Xiao-li2
Received:
2020-08-25
Online:
2021-05-26
Published:
2021-06-11
Contact:
CHENG Wen-yu
E-mail:zhaohongyuan18@163.com;wenyucheng1989@163.com
ZHAO Hong-yuan, WANG Zhao, CHENG Wen-yu, MA Ning-ning, LI Man, WEI Xiao-li. Progress on Antiviral Agents Against African Swine Fever Virus[J]. Biotechnology Bulletin, 2021, 37(5): 174-181.
[1] | 张睿, 黄旖童, 鲍晨沂, 等. 非洲猪瘟流行病学及其在中国扩散的因素分析[J]. 病毒学报, 2019,35(3):512-522. |
Zhang R, Huang YT, Bao CY, et al. Epidemiology of African swine fever and analysis of risk factors of its spread in China:An overview[J]. Chinese J Virol, 2019,35(3):512-522. | |
[2] | 欧云文, 刘俐君, 代军飞, 等. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019,35(6):156-163. |
Ou YW, Liu LJ, Dai JF, et al. Roles of African swine fever virus structural proteins in viral infection[J]. Biotech Bulletin, 2019,35(6):156-163. | |
[3] |
Hurtado C, Bustos MJ, Carrascosa AL. The use of COS-1 cells for studies of field and laboratory African swine fever virus samples[J]. J Virol Methods, 2010,164(1-2):131-134.
doi: 10.1016/j.jviromet.2009.11.030 URL |
[4] |
de León P, Bustos MJ, Carrascosa AL. Laboratory methods to study African swine fever virus[J]. Virus Res, 2013,173(1):168-179.
doi: 10.1016/j.virusres.2012.09.013 URL |
[5] |
Portugal R, Goatley LC, Husmann R, et al. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of African swine fever virus[J]. Emerg Microbes Infect, 2020,9(1):1245-1253.
doi: 10.1080/22221751.2020.1772675 URL |
[6] |
Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020,7:215.
doi: 10.3389/fvets.2020.00215 pmid: 32478103 |
[7] | Revilla Y, Pérez-Núñez D, Richt JA. African swine fever virus biology and vaccine approaches[J]. Adv Virus Res, 2018,100:41-74. |
[8] |
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons[J]. Front Immunol, 2018,9:2061.
doi: 10.3389/fimmu.2018.02061 URL |
[9] |
Schoggins JW. Interferon-stimulated genes:what do they all do?[J] Annu Rev Virol, 2019,6(1):567-584.
doi: 10.1146/annurev-virology-092818-015756 pmid: 31283436 |
[10] |
Arabyan E, Kotsynyan A, Hakobyan A, et al. Antiviral agents against African swine fever virus[J]. Virus Res, 2019,270:197669.
doi: 10.1016/j.virusres.2019.197669 URL |
[11] |
Paez E, Garcia F, Gil Fernandez C. Interferon cures cells lytically and persistently infected with African swine fever virus in vitro[J]. Arch Virol, 1990,112(1-2):115-1127.
pmid: 1695091 |
[12] |
Fan W, Jiao P, Zhang H, et al. Inhibition of African swine fever virus replication by porcine type I and type II interferons[J]. Front Microbiol, 2020,11:1203.
doi: 10.3389/fmicb.2020.01203 URL |
[13] |
Netherton CL, Simpson J, Haller O, et al. Inhibition of a large double-stranded DNA virus by MxA protein[J]. J Virol, 2009,83(5):2310-2320.
doi: 10.1128/JVI.00781-08 URL |
[14] |
Muñoz-Moreno R, Cuesta-Geijo MÁ, Martínez-Romero C, et al. Antiviral role of IFITM proteins in African swine fever virus infection[J]. PLoS One, 2016,11(4):e0154366.
doi: 10.1371/journal.pone.0154366 URL |
[15] |
Galindo I, Cuesta-Geijo MÁ, Del Puerto A, et al. Lipid exchange factors at membrane contact sites in African swine fever virus infection[J]. Viruses, 2019,11(3):199.
doi: 10.3390/v11030199 URL |
[16] | 孙茂文, 王涛, 孙元, 等. 非洲猪瘟病毒的免疫逃逸策略[J]. 微生物学报, 2020. DOI: https://DOI.org/10.13343/j.cnki.wsxb.20200166. |
Sun MW, Wang T, Sun Y, et al. Immunoevasion strategies of African swine fever virus[J]. Acta Microbiologica Sinica, 2020. DOI: https://doi.org/10.13343/j.cnki.wsxb.20200166. | |
[17] |
Garriga D, Headey S, Accurso C, et al. Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin[J]. Proc Natl Acad Sci U S A, 2018,115(33):8424-8429.
doi: 10.1073/pnas.1810398115 URL |
[18] |
Coelho J, Ferreira F, Martins C, et al. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus[J]. Virology, 2016,493:209-216.
doi: 10.1016/j.virol.2016.03.023 URL |
[19] | Coelho J, Leitão A. The African swine fever virus(ASFV)topoisomerase II as a target for viral prevention and control[J]. Vaccines(Basel), 2020,8(2):312. |
[20] |
Mottola C, Freitas FB, Simões M, et al. In vitro antiviral activity of fluoroquinolones against African swine fever virus[J]. Vet Microbiol, 2013,165(1-2):86-94.
doi: 10.1016/j.vetmic.2013.01.018 URL |
[21] |
de León P, Bustos MJ, Torres E, et al. Inhibition of porcine viruses by different cell-targeted antiviral drugs[J]. Front Microbiol, 2019,10:1853.
doi: 10.3389/fmicb.2019.01853 URL |
[22] |
Gil-Fernández C, Páez E, Vilas P, et al. Effect of disodium phosphonoacetate and iododeoxyuridine on the multiplication of African swine fever virus in vitro[J]. Chemotherapy, 1979,25(3):162-169.
doi: 10.1159/000237836 URL |
[23] |
Arzuza O, García-Villalón D, Tabarés E, et al. Inhibition of African swine fever virus DNA synjournal by(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine[J]. Biochem Biophys Res Commun, 1988,154(1):27-32.
doi: 10.1016/0006-291X(88)90644-4 URL |
[24] |
Parrish S, Hurchalla M, Liu SW, et al. The African swine fever virus g5R protein possesses mRNA decapping activity[J]. Virology, 2009,393(1):177-182.
doi: 10.1016/j.virol.2009.07.026 URL |
[25] | Villalón MD, Gil-Fernández C, De Clercq E. Activity of several S-adenosylhomocysteine hydrolase inhibitors against African swine fever virus replication in Vero cells[J]. Antiviral Res, 1993,20(2):131-144. |
[26] |
St Vincent MR, Colpitts CC, Ustinov AV, et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses[J]. Proc Natl Acad Sci U S A, 2010,107(40):17339-17344.
doi: 10.1073/pnas.1010026107 URL |
[27] |
Hakobyan A, Galindo I, Nañez A, et al. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus[J]. J Gen Virol, 2018,99(1):148-156.
doi: 10.1099/jgv.0.000991 URL |
[28] |
Hakobyan A, Arabyan E, Avetisyan A, et al. Apigenin inhibits African swine fever virus infection in vitro[J]. Arch Virol, 2016,161(12):3445-3453.
doi: 10.1007/s00705-016-3061-y URL |
[29] |
Hakobyan A, Arabyan E, Kotsinyan A, et al. Inhibition of African swine fever virus infection by genkwanin[J]. Antiviral Res, 2019,167:78-82.
doi: 10.1016/j.antiviral.2019.04.008 URL |
[30] |
Arabyan E, Hakobyan A, Kotsinyan A, et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synjournal[J]. Antiviral Res, 2018,156:128-137.
doi: 10.1016/j.antiviral.2018.06.014 URL |
[31] |
Jo S, Kim S, Shin DH, et al. Inhibition of African swine fever virus protease by myricetin and myricitrin[J]. J Enzyme Inhib Med Chem, 2020,35(1):1045-1049.
doi: 10.1080/14756366.2020.1754813 URL |
[32] |
Fasina FO, Olaokun OO, Oladipo OO, et al. Phytochemical analysis and in vitro anti-African swine fever virus activity of extracts and fractions of Ancistrocladus uncinatus, Hutch and Dalziel(Ancistrocladaceae)[J]. BMC Vet Res, 2013,9:120.
doi: 10.1186/1746-6148-9-120 URL |
[33] |
Galindo I, Hernáez B, Berná J, et al. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication[J]. Antiviral Res, 2011,91(1):57-63.
doi: 10.1016/j.antiviral.2011.04.013 URL |
[34] |
Fabregas J, García D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicaemia virus(VHSV)and African swine fever virus(ASFV)by extracts from marine microalgae[J]. Antiviral Res, 1999,44(1):67-73.
doi: 10.1016/S0166-3542(99)00049-2 URL |
[35] |
Madureira AM, Ascenso JR, Valdeira L, et al. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis[J]. Nat Prod Res, 2003,17(5):375-380.
pmid: 14526920 |
[36] |
Keita D, Heath L, Albina E. Control of African swine fever virus replication by small interfering RNA targeting the A151R and VP72 genes[J]. Antivir Ther, 2010,15(5):727-736.
doi: 10.3851/IMP1593 URL |
[37] | Frouco G, Freitas FB, Coelho J, et al. DNA-binding properties of African swine fever virus pA104R, a histone-like protein involved in viral replication and transcription[J]. J Virol, 2017,91(12):e02498-16. |
[38] |
Hübner A, Petersen B, Keil GM, et al. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene(CP204L)[J]. Sci Rep, 2018,8(1):1449.
doi: 10.1038/s41598-018-19626-1 URL |
[39] |
Frouco G, Freitas FB, Martins C, et al. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14[J]. Virus Res, 2017,242:24-29.
doi: 10.1016/j.virusres.2017.09.009 URL |
[40] | Ziem B, Rahn J, Donskyi I, et al. Polyvalent 2D entry inhibitors for pseudorabies and African swine fever virus[J]. Macromol Biosci, 2017. DOI: 10.1002/mabi.201600499. |
[41] | Niederwerder MC, Dee S, Diel DG, et al. Mitigating the risk of African swine fever virus in feed with anti-viral chemical additives[J]. Transbound Emerg Dis, 2020. DOI: 10.1111/tbed.13699. |
[42] | 王卓亚, 李阳阳, 徐锡明, 等. 以非洲猪瘟病毒DNA聚合酶X为靶点的海洋药物计算机虚拟筛选[J]. 中国海洋药物, 2018,37(6):1-7. |
Wang ZY, Li YY, Xu XM, et al. Virtual drug screening of marine natural products targeting African swine fever virus DNA polymerase X[J]. Chinese J Marine Drugs, 2018,37(6):1-7. | |
[43] |
Kinyanyi D, Amwayi P, Wamalwa M, et al. Comparative in silico study of congocidine congeners as potential inhibitors of African swine fever virus[J]. PLoS One, 2019,14(8):e0221175.
doi: 10.1371/journal.pone.0221175 URL |
[1] | CHENG Wen-yu, ZHANG Bo-xin, ZHAO Hong-yuan, CHEN Yan, XIE Juan-ping. Research Progress in Natural Products Against Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2022, 38(12): 127-136. |
[2] | WANG Cai-xia, DU Fang-yuan, LIN Xiang-mei, Grzegorz Wozniakowski, WANG Qin, FENG Chun-yan, WU Shao-qiang. Generation of a Vero Cell Line Stably Expressing African Swine Fever Virus P54 Protein [J]. Biotechnology Bulletin, 2020, 36(5): 139-144. |
[3] | OU Yun-wen, LIU Li-jun, DAI Jun-fei, MA Bing, ZHANG Yong-guang, ZHANG Jie. Roles of African Swine Fever Virus Structural Proteins in Viral Infection [J]. Biotechnology Bulletin, 2019, 35(6): 156-163. |
[4] | Wang Xi,Duan Shenglin,Xiong Shuli,Zheng Guilan,Zhang Guiyou,Wang Hongzhong. Application of Auto-induction System in the Synthesis of 2’-deoxycytidine [J]. Biotechnology Bulletin, 2014, 0(11): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||