Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (7): 3-13.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0710
Previous Articles Next Articles
PENG Huan1(), ZHAO Wei1, YAO Ke1,2, JIANG Chen1, HUANG Wen-kun1, KONG Ling-an1, ZHENG Jing-wu2, PENG De-liang1()
Received:
2021-06-02
Online:
2021-07-26
Published:
2021-08-13
Contact:
PENG De-liang
E-mail:hpeng83@126.com;pengdeliang@caas.cn
PENG Huan, ZHAO Wei, YAO Ke, JIANG Chen, HUANG Wen-kun, KONG Ling-an, ZHENG Jing-wu, PENG De-liang. Research Progress on the Genomics of Plant-Parasitic Nematode[J]. Biotechnology Bulletin, 2021, 37(7): 3-13.
线虫种类(种群) Species(population) | 染色体数 Chromosome number | 组装大小 Assembly size/Mb | Scaffold数目 No. of Scaffolds | Scaffolds N50值 Scaffold N50/kb | CEGMA完整性 CEGMA complete/% | BUSCO完整性 BUSCO complete/% | 基因数 Genes | GC含量 GC% | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
马铃薯白线虫Globodera pallida | 2n=18 | 124.7 | 6873 | 122 | 81 | 43.7 | 16419 | 36.7 | [ |
马铃薯金线虫 G. rostochiensis | 2n=18 | 95.9 | 4377 | 88.7 | 93.55 | 57.7 | 14378 | 36.1 | [ |
艾灵顿孢囊线虫G. ellingtonae | 2n=18 | 119 | 2248 | 360 | 92 | NA | 14309 | 37 | [ |
大豆孢囊线虫 Heterodera glycines(TN10) | NA | 123.8 | 738 | 304.1 | NA | 54.0 | 29769 | NA | [ |
大豆孢囊线虫 H. glycines(X12) | 18 | 141.01 | 267 | 16265.6 | NA | 52.7 | 11882 | 36.89 | [ |
南方根结线虫Meloidogyne incognita(Morelos) | NA | 86.1 | 2817 | 62.5 | 94.76 | 88.5 | 19212 | 31.4 | [ |
南方根结线虫 M. incognita(W1) | NA | 121.96 | 33735 | 16.5 | 82.66 | 80.2 | 24714 | 30.6 | [ |
南方根结线虫 M. incognita(V3) | NA | 183.53 | 12091 | 38.6 | 97.0 | 71.3 | 45351 | 29.8 | [ |
北方根结线虫 M. hapla | 2n=32 | 53.58 | 1523 | 83.65 | 93.55 | 87.4 | 14420 | 27.4 | [ |
爪哇根结线虫 M. javanica(Avignon) | NA | 235.8 | 31341 | 10.4 | 96.0 | 90.1 | 98578 | 29.9 | [ |
爪哇根结线虫 M. javanica(VW4) | NA | 142.6 | 34394 | 14.1 | 89.52 | 87.5 | 26917 | 30.2 | [ |
花生根结线虫 M. arenaria(Guadeloupe) | NA | 258.07 | 26196 | 16.5 | 94.76 | 87.1 | 103001 | 29.8 | [ |
花生根结线虫 M. arenaria(A2-O) | NA | 284.05 | 2224 | 204.6 | 94.76 | 87.1 | NA | 30 | [ |
花生根结线虫M. arenaria(HarA) | NA | 163.7 | 46509 | 10.5 | 91.53 | 78.2 | 30308 | 30.3 | [ |
象耳豆根结线虫 M. enterolobii(Swiss) | NA | 240 | 4437 | 143 | 94.76 | 87.5 | 14414 | 30 | [ |
象耳豆根结线虫M. enterolobii(L30) | NA | 162.3 | 46090 | 9.28 | 81.45 | 79.9 | 31051 | 30.2 | [ |
佛罗里达根结线虫 M. floridensis(JB5) | NA | 99.89 | 81111 | 3.52 | 60.08 | 54.1 | NA | 29.7 | [ |
佛罗里达根结线虫M. floridensis(SJF1) | NA | 74.8 | 9134 | 13.3 | 84.0 | 76.5 | 14144 | 30.3 | [ |
拟禾本根结线虫M. graminicola(IARI) | NA | 38.18 | 4304 | 20.4 | 84.27 | 73.6 | 10196 | 23.1 | [ |
鲁克根结线虫M. luci | NA | 209.16 | 327 | 1711 | 88.1 | NA | NA | 30.2 | [ |
松材线虫 Bursaphelenchus xylophilus | 2n=12 | 74.6 | 1231 | 1158 | 97.6 | 75.8 | 18074 | 40.4 | [ |
拟松材线虫B. mucronatus | 2n=12 | 73 | 72 | 11500 | 77.4 | 74.0 | 13696 | NA | [ |
香蕉穿孔线虫Radopholus similis(Rv) | NA | 50.5 | 5194 | 27.8 | NA | 59.9 | 13120 | 47.06 | [ |
香蕉穿孔线虫R. similis(Rd) | NA | 50.0 | 6195 | 20.07 | NA | 60.4 | 12452 | 47.11 | [ |
腐烂茎线虫Ditylenchus destructor | NA | 112 | 1761 | 570.4 | 87.1 | 76.1 | 13938 | 36.6 | [ |
鳞球茎线虫D. dipsaci | NA | 227.2 | 1394 | 287 | 87.9 | 57.4 | 26428 | 37.5 | [ |
咖啡短体线虫Pratylenchus coffeae | 2n=14 | 19.7 | 5821 | 10 | NA | NA | 6712 | 38.1 | [ |
秀丽隐杆线虫Caenorhabditis elegans | 2n=12 | 100.3 | 7 | 17494 | 98.4 | 98.6 | 20317 | 35.4 | [ |
Table 1 Comparison of basic genomic characteristics between plant nematode and C. elegans
线虫种类(种群) Species(population) | 染色体数 Chromosome number | 组装大小 Assembly size/Mb | Scaffold数目 No. of Scaffolds | Scaffolds N50值 Scaffold N50/kb | CEGMA完整性 CEGMA complete/% | BUSCO完整性 BUSCO complete/% | 基因数 Genes | GC含量 GC% | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
马铃薯白线虫Globodera pallida | 2n=18 | 124.7 | 6873 | 122 | 81 | 43.7 | 16419 | 36.7 | [ |
马铃薯金线虫 G. rostochiensis | 2n=18 | 95.9 | 4377 | 88.7 | 93.55 | 57.7 | 14378 | 36.1 | [ |
艾灵顿孢囊线虫G. ellingtonae | 2n=18 | 119 | 2248 | 360 | 92 | NA | 14309 | 37 | [ |
大豆孢囊线虫 Heterodera glycines(TN10) | NA | 123.8 | 738 | 304.1 | NA | 54.0 | 29769 | NA | [ |
大豆孢囊线虫 H. glycines(X12) | 18 | 141.01 | 267 | 16265.6 | NA | 52.7 | 11882 | 36.89 | [ |
南方根结线虫Meloidogyne incognita(Morelos) | NA | 86.1 | 2817 | 62.5 | 94.76 | 88.5 | 19212 | 31.4 | [ |
南方根结线虫 M. incognita(W1) | NA | 121.96 | 33735 | 16.5 | 82.66 | 80.2 | 24714 | 30.6 | [ |
南方根结线虫 M. incognita(V3) | NA | 183.53 | 12091 | 38.6 | 97.0 | 71.3 | 45351 | 29.8 | [ |
北方根结线虫 M. hapla | 2n=32 | 53.58 | 1523 | 83.65 | 93.55 | 87.4 | 14420 | 27.4 | [ |
爪哇根结线虫 M. javanica(Avignon) | NA | 235.8 | 31341 | 10.4 | 96.0 | 90.1 | 98578 | 29.9 | [ |
爪哇根结线虫 M. javanica(VW4) | NA | 142.6 | 34394 | 14.1 | 89.52 | 87.5 | 26917 | 30.2 | [ |
花生根结线虫 M. arenaria(Guadeloupe) | NA | 258.07 | 26196 | 16.5 | 94.76 | 87.1 | 103001 | 29.8 | [ |
花生根结线虫 M. arenaria(A2-O) | NA | 284.05 | 2224 | 204.6 | 94.76 | 87.1 | NA | 30 | [ |
花生根结线虫M. arenaria(HarA) | NA | 163.7 | 46509 | 10.5 | 91.53 | 78.2 | 30308 | 30.3 | [ |
象耳豆根结线虫 M. enterolobii(Swiss) | NA | 240 | 4437 | 143 | 94.76 | 87.5 | 14414 | 30 | [ |
象耳豆根结线虫M. enterolobii(L30) | NA | 162.3 | 46090 | 9.28 | 81.45 | 79.9 | 31051 | 30.2 | [ |
佛罗里达根结线虫 M. floridensis(JB5) | NA | 99.89 | 81111 | 3.52 | 60.08 | 54.1 | NA | 29.7 | [ |
佛罗里达根结线虫M. floridensis(SJF1) | NA | 74.8 | 9134 | 13.3 | 84.0 | 76.5 | 14144 | 30.3 | [ |
拟禾本根结线虫M. graminicola(IARI) | NA | 38.18 | 4304 | 20.4 | 84.27 | 73.6 | 10196 | 23.1 | [ |
鲁克根结线虫M. luci | NA | 209.16 | 327 | 1711 | 88.1 | NA | NA | 30.2 | [ |
松材线虫 Bursaphelenchus xylophilus | 2n=12 | 74.6 | 1231 | 1158 | 97.6 | 75.8 | 18074 | 40.4 | [ |
拟松材线虫B. mucronatus | 2n=12 | 73 | 72 | 11500 | 77.4 | 74.0 | 13696 | NA | [ |
香蕉穿孔线虫Radopholus similis(Rv) | NA | 50.5 | 5194 | 27.8 | NA | 59.9 | 13120 | 47.06 | [ |
香蕉穿孔线虫R. similis(Rd) | NA | 50.0 | 6195 | 20.07 | NA | 60.4 | 12452 | 47.11 | [ |
腐烂茎线虫Ditylenchus destructor | NA | 112 | 1761 | 570.4 | 87.1 | 76.1 | 13938 | 36.6 | [ |
鳞球茎线虫D. dipsaci | NA | 227.2 | 1394 | 287 | 87.9 | 57.4 | 26428 | 37.5 | [ |
咖啡短体线虫Pratylenchus coffeae | 2n=14 | 19.7 | 5821 | 10 | NA | NA | 6712 | 38.1 | [ |
秀丽隐杆线虫Caenorhabditis elegans | 2n=12 | 100.3 | 7 | 17494 | 98.4 | 98.6 | 20317 | 35.4 | [ |
[1] |
Elling AA.Major emerging problems with minor Meloidogyne species[J].Phytopathology,2013,103(11):1092-1102.
doi: 10.1094/PHYTO-01-13-0019-RVW pmid: 23777404 |
[2] | Nicol JM,Turner SJ,Coyne DL,et al.Current nematode threats to world agriculture[M]// Jones J, Gheysen G, Fenoll C. Genomics and Molecular Genetics of Plant-Nematode Interactions. Heidelberg:Springer,2011, 21-43. |
[3] |
van Megen H,van den Elsen S,Holterman M,et al.A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences[J].Nematology,2009,11(6):927-950.
doi: 10.1163/156854109X456862 URL |
[4] |
Consortium The C elegans Sequencing.Genome sequence of the nematode C. elegans:a platform for investigating biology[J].Science,1998,282(5396):2012-2018.
doi: 10.1126/science.282.5396.2012 URL |
[5] |
Abad P,Gouzy J,Aury JM,et al.Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J].Nat Biotechnol,2008,26(8):909-915.
doi: 10.1038/nbt.1482 URL |
[6] |
Opperman CH,Bird DM,Williamson VM,et al.Sequence and genetic map of Meloidogyne hapla:a compact nematode genome for plant parasitism[J].PNAS,2008,105(39):14802-14807.
doi: 10.1073/pnas.0805946105 pmid: 18809916 |
[7] |
Kikuchi T,Cotton JA,Dalzell JJ,et al.Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J].PLoS Pathog,2011,7(9):e1002219. DOI:10.1371/journal.ppat.1002219.
doi: 10.1371/journal.ppat.1002219 URL |
[8] | Cotton JA,Lilley CJ,Jones LM,et al.The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode[J].Genome Biol,2014,15(3):1-17. |
[9] |
Eves-van den Akker S,Laetsch DR,Thorpe P,et al.The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence[J].Genome Biol,2016,17(1):1-23.
doi: 10.1186/s13059-015-0866-z URL |
[10] |
Masonbrink R,Maier TR,Muppirala U,et al.The genome of the soybean cyst nematode(Heterodera glycines)reveals complex patterns of duplications involved in the evolution of parasitism genes[J].BMC Genom,2019,20(1):119.
doi: 10.1186/s12864-019-5485-8 URL |
[11] |
Phillips WS,Howe DK,Brown AMV,et al.The draft genome of Globodera ellingtonae[J].J Nematol,2017,49(2):127-128.
pmid: 28706309 |
[12] |
Wu SY,Gao SH,Wang S,et al.A reference genome of Bursaphelenchus mucronatus provides new resources for revealing its displacement by pinewood nematode[J].Genes,2020,11(5):570.
doi: 10.3390/genes11050570 URL |
[13] | Koutsovoulos GD,Poullet M,El Ashry A,et al.The polyploid genome of the mitotic parthenogenetic root-knot nematode Meloidogyne enterolobii[J].BioRxiv.2019;586818. |
[14] |
Somvanshi VS,Tathode M,Shukla RN,et al.Nematode genome announcement:a draft genome for rice root-knot nematode, Meloidogyne graminicola[J].J Nematol,2018,50(2):111-116.
doi: 10.21307/jofnem-2018-018 pmid: 30451432 |
[15] |
Lunt DH,Kumar S,Koutsovoulos G,et al.The complex hybrid origins of the root knot nematodes revealed through comparative genomics[J].PeerJ,2014,2:e356. DOI:10.7717/peerj.356.
doi: 10.7717/peerj.356 URL |
[16] |
Sato K,Kadota Y,Gan P,et al.High-quality genome sequence of the root-knot nematode Meloidogyne arenaria genotype A2-O[J].Genome Announc,2018,6(26):e00519-18. DOI:10.1128/genomea.00519-18.
doi: 10.1128/genomea.00519-18 |
[17] |
Blanc-Mathieu R,Perfus-Barbeoch L,Aury JM,et al.Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes[J].PLoS Genet,2017,13(6):e1006777.
doi: 10.1371/journal.pgen.1006777 URL |
[18] |
Susič N,Koutsovoulos GD,Riccio C,et al.Genome sequence of the root-knot nematode Meloidogyne Luci[J].J Nematol,2020,52:1-5.
doi: 10.21307/jofnem-2020-025 pmid: 32180388 |
[19] | Zheng JS,Peng DH,Chen L,et al.The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes[J].Proc R Soc B,2016,283(1835):20160942. |
[20] | Mimee B,Lord E,Véronneau PY,et al.The draft genome of Ditylenchus dipsaci[J].J Nematol,2019,51:1-3. |
[21] |
Burke M,Scholl EH,Bird DM,et al.The plant parasite Pratylenchus coffeae carries a minimal nematode genome[J].nematology,2015,17(6):621-637.
doi: 10.1163/15685411-00002901 URL |
[22] |
Mathew R,Opperman CH.The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes[J].PLoS One,2019,14(10):e0224391.
doi: 10.1371/journal.pone.0224391 URL |
[23] | Wram CL,Hesse CN,Wasala SK,et al.Genome announcement:the draft genomes of two Radopholus similis populations from Costa rica[J].J Nematol,2019,51:1-4. |
[24] | Nyaku ST,Sripathi VR,Lawrence K,et al.Characterizing repeats in two whole-genome amplification methods in the reniform nematode genome[J].Int J Genom,2021,2021:1-8. |
[25] |
Kikuchi T,Eves-van den Akker S,Jones JT.Genome evolution of plant-parasitic nematodes[J].Annu Rev Phytopathol,2017,55:333-354.
doi: 10.1146/annurev-phyto-080516-035434 pmid: 28590877 |
[26] |
Leroy S,Duperray C,Morand S.Flow cytometry for parasite nematode genome size measurement[J].Mol Biochem Parasitol,2003,128(1):91-93.
doi: 10.1016/S0166-6851(03)00023-9 URL |
[27] |
Pableo EC,Triantaphyllou AC.DNA complexity of the root-knot nematode(Meloidogyne spp. )genome[J].J Nematol,1989,21(2):260-263.
pmid: 19287606 |
[28] |
Szitenberg A,Salazar-Jaramillo L,Blok VC,et al.Comparative genomics of apomictic root-knot nematodes:hybridization, ploidy, and dynamic genome change[J].Genome Biol Evol,2017,9(10):2844-2861.
doi: 10.1093/gbe/evx201 pmid: 29036290 |
[29] |
Lian Y,Wei H,Wang JS,et al.Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines[J].Mol Ecol Resour,2019,19(6):1637-1646.
doi: 10.1111/1755-0998.13068 pmid: 31339217 |
[30] |
Nyaku ST,Sripathi VR,Kantety RV,et al.Characterization of the reniform nematode genome by shotgun sequencing[J].Genome,2014,57(4):209-221.
doi: 10.1139/gen-2014-0019 URL |
[31] |
Castagnone-Sereno P,Danchin EGJ,Perfus-Barbeoch L,et al.Diversity and evolution of root-knot nematodes, genus Meloidogyne:new insights from the genomic era[J].Annu Rev Phytopathol,2013,51:203-220.
doi: 10.1146/annurev-phyto-082712-102300 pmid: 23682915 |
[32] | Castagnone-Sereno P.Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes[J].Heredity:Edinb,2006,96(4):282-289. |
[33] | 牛俊海,卜祥霞,薛慧,等.植物根结线虫基因组学研究进展[J].植物病理学报,2010,40(3):225-234. |
Niu JH,Bu XX,Xue H,et al.Research progress in genomics of root-knot nematodes(Meloidogyne spp. )[J].Acta Phytopathol Sin,2010,40(3):225-234. | |
[34] |
Young ND.The genetic architecture of resistance[J].Curr Opin Plant Biol,2000,3(4):285-290.
pmid: 10873848 |
[35] |
Castagnone-Sereno P,Semblat JP,Castagnone C.Modular architecture and evolution of the map-1 gene family in the root-knot nematode Meloidogyne incognita[J].Mol Genet Genomics,2009,282(5):547-554.
doi: 10.1007/s00438-009-0487-x pmid: 19787376 |
[36] |
Rutter WB,Hewezi T,Maier TR,et al.Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs[J].Phytopathology,2014,104(8):879-885.
doi: 10.1094/PHYTO-11-13-0326-R URL |
[37] |
Schoch CL,Sung GH,López-Giráldez F,et al.The Ascomycota tree of life:a Phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits[J].Syst Biol,2009,58(2):224-239.
doi: 10.1093/sysbio/syp020 URL |
[38] |
Eves-Van Den Akker S,Lilley CJ,Yusup HB,et al.Functional C-TERMINALLY ENCODED PEPTIDE(CEP)plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis[J].Mol Plant Pathol,2016,17(8):1265-1275.
doi: 10.1111/mpp.2016.17.issue-8 URL |
[39] |
Noon JB,Hewezi T,Maier TR,et al.Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism[J].Phytopathology,2015,105(10):1362-1372.
doi: 10.1094/PHYTO-02-15-0049-R URL |
[40] |
den Akker SEV,Lilley CJ,Jones JT,et al.Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes[J].PLoS Pathog,2014,10(9):e1004391.
doi: 10.1371/journal.ppat.1004391 URL |
[41] |
Coletta A,Pinney JW,Solís DY,et al.Low-complexity regions within protein sequences have position-dependent roles[J].BMC Syst Biol,2010,4:43.
doi: 10.1186/1752-0509-4-43 pmid: 20385029 |
[42] |
Haegeman A,Jones JT,Danchin EGJ.Horizontal gene transfer in nematodes:a catalyst for plant parasitism?[J].Mol Plant Microbe Interact,2011,24(8):879-887.
doi: 10.1094/MPMI-03-11-0055 URL |
[43] |
Smant G,Stokkermans JP,Yan Y,et al.Endogenous cellulases in animals:isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes[J].PNAS,1998,95(9):4906-4911.
pmid: 9560201 |
[44] |
Haegeman A,Joseph S,Gheysen G.Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology[J].Mol Biochem Parasitol,2011,178(1/2):7-14.
doi: 10.1016/j.molbiopara.2011.04.001 URL |
[45] |
Mitchum MG,Hussey RS,Baum TJ,et al.Nematode effector proteins:an emerging paradigm of parasitism[J].New Phytol,2013,199(4):879-894.
doi: 10.1111/nph.2013.199.issue-4 URL |
[46] |
Danchin EG,Rosso MN,Vieira P,et al.Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes[J].PNAS,2010,107(41):17651-17656.
doi: 10.1073/pnas.1008486107 URL |
[47] |
Kikuchi T,Furlanetto C,Jones J.Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes[J].Nematology,2005,7(5):641-646.
doi: 10.1163/156854105775142919 URL |
[48] | 姚珂,郑经武,黄文坤,等.植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J].植物病理学报,2020,50(5):517-530. |
Yao K,Zheng JW,Huang WK,et al.Research progress on the regulation of host defense by plant parasitic nematode effectors[J].Acta Phytopathol Sin,2020,50(5):517-530. | |
[49] |
Bird DM,Williamson VM,Abad P,et al.The genomes of root-knot nematodes[J].Annu Rev Phytopathol,2009,47(1):333-351.
doi: 10.1146/annurev-phyto-080508-081839 URL |
[50] |
Gao BL,Allen R,Maier T,et al.The parasitome of the phytonematode Heterodera glycines[J].Mol Plant Microbe Interact,2003,16(8):720-726.
doi: 10.1094/MPMI.2003.16.8.720 URL |
[51] |
Huang G,Gao B,Maier T,et al.A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita[J].Mol Plant Microbe Interact,2003,16(5):376-381.
doi: 10.1094/MPMI.2003.16.5.376 URL |
[52] | Molinari S.Changes of catalase and SOD activities in the early response of tomato to Meloidogyne attack[J].Nematologia Mediterranea,1999,27(1):167-172. |
[53] |
Rhee SG,Kang SW,Jeong W,et al.Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins[J].Curr Opin Cell Biol,2005,17(2):183-189.
pmid: 15780595 |
[54] |
Chen SY,Chronis D,Wang XH.The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI[J].Plant Signal Behav,2013,8(9):e25359.
doi: 10.4161/psb.25359 URL |
[55] |
Mei YY,Thorpe P,Guzha A,et al.Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2[J].Nematology,2015,17(4):409-424.
doi: 10.1163/15685411-00002875 URL |
[56] |
Eves-van den Akker S,Birch PR.Opening the effector protein toolbox for plant-parasitic cyst nematode interactions[J].Mol Plant,2016,9(11):1451-1453.
doi: 10.1016/j.molp.2016.09.008 URL |
[57] |
Espada M,Eves-van den Akker S,Maier T,et al.STATAWAARS:a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus[J].BMC Genom,2018,19(1):553.
doi: 10.1186/s12864-018-4908-2 URL |
[58] |
Bargmann C.Chemosensation in C. elegans[J].WormBook,2006. DOI:10.1895/wormbook.1.123.1.
doi: 10.1895/wormbook.1.123.1 |
[59] |
Danchin EGJ,Arguel MJ,Campan-Fournier A,et al.Identification of novel target genes for safer and more specific control of root-knot nematodes from a Pan-genome mining[J].PLoS Pathog,2013,9(10):e1003745.
doi: 10.1371/journal.ppat.1003745 URL |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[3] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[4] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[5] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[6] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[7] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[8] | DU Dong-dong, QIAN Jing, LI Si-qi, LIU Wen-fei, WEI Xiang-li, LIU Chang-yong, LUO Rui-feng, KANG Li-chao. Whole Genome Sequencing and Analysis of Listeria monocytogenes Strain LMXJ15 [J]. Biotechnology Bulletin, 2023, 39(7): 298-306. |
[9] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[10] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[11] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[12] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[13] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[14] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[15] | XIAO Xiao-jun, CHEN Ming, HAN De-peng, YU Pao-lan, ZHENG Wei, XIAO Guo-bin, ZHOU Qing-hong, ZHOU Hui-wen. Genome Wide Association Analysis of Thousand Seed Weight in Brassica napus L. [J]. Biotechnology Bulletin, 2023, 39(3): 143-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||