Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 95-105.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0897
Previous Articles Next Articles
ZHAO Ya-ru1,2(), XU Qing-fang1(), GAO Wen-jun1, GUO Gang3, CHEN Lei3, YU Zhu4
Received:
2021-07-13
Online:
2021-09-26
Published:
2021-10-25
Contact:
XU Qing-fang
E-mail:13948726014@163.com;xuqfsxau@126.com
ZHAO Ya-ru, XU Qing-fang, GAO Wen-jun, GUO Gang, CHEN Lei, YU Zhu. Study on the Detoxification Characteristics of Antifungal Lactic Acid Bacteria and the Application of Silage[J]. Biotechnology Bulletin, 2021, 37(9): 95-105.
序号 No. | 检测项目 Detected item/(μg·kg-1) | 检验结果 Test result |
---|---|---|
1 | 黄曲霉毒素B1(AFB1) | 26.0 |
2 | 黄曲霉毒素B2(AFB2) | 2.8 |
3 | 黄曲霉毒素G1(AFG1) | 未检出(检出限:0.3) |
4 | 黄曲霉毒素G2(AFG2) | 未检出(检出限:0.3) |
5 | 黄曲霉毒素M1(AFM1) | 未检出(检出限:0.3) |
Table 1 Toxigenic characteristics of mold
序号 No. | 检测项目 Detected item/(μg·kg-1) | 检验结果 Test result |
---|---|---|
1 | 黄曲霉毒素B1(AFB1) | 26.0 |
2 | 黄曲霉毒素B2(AFB2) | 2.8 |
3 | 黄曲霉毒素G1(AFG1) | 未检出(检出限:0.3) |
4 | 黄曲霉毒素G2(AFG2) | 未检出(检出限:0.3) |
5 | 黄曲霉毒素M1(AFM1) | 未检出(检出限:0.3) |
pH | 抑菌活性Inhibition of mould activity/mm |
---|---|
CFS(3.5) | + + + |
4.0 | + + + |
5.0 | + |
6.0 | - |
Table 2 Effect of different pH on the inhibition of mould activity of cell-free supernatant
pH | 抑菌活性Inhibition of mould activity/mm |
---|---|
CFS(3.5) | + + + |
4.0 | + + + |
5.0 | + |
6.0 | - |
项目Item | CK | L | A | L+A | |
---|---|---|---|---|---|
各指标得分 Score of each indicator | 气味Odor | 9 | 14 | 10 | 12 |
结构Structure | 3 | 3 | 4 | 3 | |
色泽Color | 3 | 3 | 2 | 4 | |
总分Total score | 15 | 20 | 16 | 19 | |
等级Grade | 良 | 优 | 良 | 优 |
Table 3 Sensory evaluation of whole crop corn silage
项目Item | CK | L | A | L+A | |
---|---|---|---|---|---|
各指标得分 Score of each indicator | 气味Odor | 9 | 14 | 10 | 12 |
结构Structure | 3 | 3 | 4 | 3 | |
色泽Color | 3 | 3 | 2 | 4 | |
总分Total score | 15 | 20 | 16 | 19 | |
等级Grade | 良 | 优 | 良 | 优 |
天数Days/d | 微生物Microorganism | CK | L | A | L+A |
---|---|---|---|---|---|
0 | 乳酸菌Lactic acid bacteria | 3.24±0.15b | 4.27±0.09a | 3.23±0.13b | 4.27±0.05a |
24 | 6.45±0.17d | 8.51±0.23a | 7.60±0.06c | 8.47±0.09b | |
48 | 5.23±0.07b | 6.33±0.16a | 5.29±0.06b | 6.30±0.04a | |
0 | 霉菌Mold | 1.42±0.42a | 1.43±0.25a | 1.47±0.12a | 1.44±0.06a |
24 | 0 | 0 | 0 | 0 | |
48 | 0 | 0 | 0 | 0 |
Table 4 Number of lactic acid bacteria and molds during fermentation of whole crop corn silage(log CFU/g)
天数Days/d | 微生物Microorganism | CK | L | A | L+A |
---|---|---|---|---|---|
0 | 乳酸菌Lactic acid bacteria | 3.24±0.15b | 4.27±0.09a | 3.23±0.13b | 4.27±0.05a |
24 | 6.45±0.17d | 8.51±0.23a | 7.60±0.06c | 8.47±0.09b | |
48 | 5.23±0.07b | 6.33±0.16a | 5.29±0.06b | 6.30±0.04a | |
0 | 霉菌Mold | 1.42±0.42a | 1.43±0.25a | 1.47±0.12a | 1.44±0.06a |
24 | 0 | 0 | 0 | 0 | |
48 | 0 | 0 | 0 | 0 |
天数 Days | 有机酸Organic acid | CK | L | A | L+A |
---|---|---|---|---|---|
0 | 乳酸Lactic acid/% | 0.27±0.07a | 0.31±0.00a | 0.25±0.03a | 0.29±0.13a |
24 | 1.47±0.19ab | 1.68±0.45a | 1.43±0.78ab | 1.63±0.12a | |
48 | 1.54±0.09b | 2.18±0.35a | 1.53±0.13b | 2.20±0.54a | |
0 | 乙酸Acetic acid/% | 0.40±0.09a | 0.40±0.10a | 0.39±0.27a | 0.39±0.02a |
24 | 0.71±0.09b | 0.82±0.01a | 0.70±0.34b | 0.80±0.23a | |
48 | 1.10±1.04ab | 1.21±0.26a | 1.07±0.17ab | 1.22±0.00a | |
0 | 丙酸Propionic acid/% | — | — | — | — |
24 | 1.99±0.21a | — | 1.97±0.42a | — | |
48 | 2.14±1.39b | 3.41±0.52a | 2.15±1.39b | 3.50±1.39a | |
0 | 丁酸Butyric acid/% | — | — | — | — |
24 | — | — | — | — | |
48 | — | — | — | — |
Table 5 Table Organic acid content during fermentation of whole crop corn silage
天数 Days | 有机酸Organic acid | CK | L | A | L+A |
---|---|---|---|---|---|
0 | 乳酸Lactic acid/% | 0.27±0.07a | 0.31±0.00a | 0.25±0.03a | 0.29±0.13a |
24 | 1.47±0.19ab | 1.68±0.45a | 1.43±0.78ab | 1.63±0.12a | |
48 | 1.54±0.09b | 2.18±0.35a | 1.53±0.13b | 2.20±0.54a | |
0 | 乙酸Acetic acid/% | 0.40±0.09a | 0.40±0.10a | 0.39±0.27a | 0.39±0.02a |
24 | 0.71±0.09b | 0.82±0.01a | 0.70±0.34b | 0.80±0.23a | |
48 | 1.10±1.04ab | 1.21±0.26a | 1.07±0.17ab | 1.22±0.00a | |
0 | 丙酸Propionic acid/% | — | — | — | — |
24 | 1.99±0.21a | — | 1.97±0.42a | — | |
48 | 2.14±1.39b | 3.41±0.52a | 2.15±1.39b | 3.50±1.39a | |
0 | 丁酸Butyric acid/% | — | — | — | — |
24 | — | — | — | — | |
48 | — | — | — | — |
天数Days/d | 项目Item/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | DMR | CP | EE | Ash | NDF | ADF | Ca | P | WSC | Starch | ||
CK | 0 | 65.44±0.10a | 95.77±0.14a | 9.05±0.70a | 2.56±0.39a | 5.45±0.93a | 58.57±0.53a | 35.47±0.38a | 0.20±0.03a | 0.16±0.00a | 12.37±0.08a | 18.30±0.94a |
24 | 63.44±0.19b | 92.85±0.28b | 10.17±1.10a | 2.57±0.41a | 5.58±1.17a | 56.02±0.54a | 32.92±0.77a | 0.25±0.04a | 0.16±0.01a | 8.58±0.37b | 17.41±2.40a | |
48 | 62.06±0.10b | 90.81±0.14b | 10.67±1.78a | 1.73±0.32a | 6.45±0.46a | 54.55±0.38ab | 32.58±0.25a | 0.33±0.03a | 0.30±0.03a | 5.15±0.39b | 14.30±2.97a | |
L | 0 | 65.33±0.17a | 95.61±0.24a | 8.89±0.20a | 2.59±0.33a | 5.23±0.64a | 57.67±0.19a | 35.04±0.73a | 0.21±0.03a | 0.16±0.00a | 12.50±0.04a | 18.62±0.86a |
24 | 64.17±0.17a | 93.90±0.24a | 9.52±0.62a | 2.33±0.40a | 5.76±1.11a | 54.06±0.63b | 30.71±0.36b | 0.24±0.04a | 0.16±0.00a | 9.99±0.20a | 13.02±0.17b | |
48 | 63.39±0.10a | 92.76±0.14a | 10.85±0.78a | 1.83± 0.17a | 6.20± 0.36a | 54.15±0.60ab | 30.53±0.28b | 0.29± 0.03a | 0.29± 0.01a | 6.90± 0.45a | 8.84± 0.58b | |
A | 0 | 65.17±0.17a | 95.37±0.24a | 8.73± 0.19a | 2.52± 0.39a | 5.33± 1.35a | 58.26±0.39a | 35.30±1.04a | 0.20± 0.02a | 0.16± 0.00a | 12.36±0.02a | 18.22±0.21a |
24 | 63.44±0.19b | 92.85±0.28b | 9.68± 1.05a | 2.44± 0.23a | 5.48± 0.74a | 55.97±0.30a | 32.80±0.36a | 0.24± 0.04a | 0.16± 0.00a | 8.53± 0.12b | 17.36±2.32a | |
48 | 62.06±0.10b | 90.81±0.14b | 10.22±1.88a | 1.77± 0.36a | 6.11± 0.61a | 54.82±0.08a | 32.38±0.42a | 0.32± 0.02a | 0.28± 0.02a | 5.14± 0.73b | 14.11±2.71a | |
L+A | 0 | 65.28±0.25a | 95.53±0.37a | 9.04± 0.18a | 2.48± 0.27a | 5.22± 0.60a | 57.99±0.66a | 34.77±0.62a | 0.19± 0.00a | 0.16± 0.01a | 12.29±0.30a | 18.56±0.37a |
24 | 64.17±0.17a | 93.90±0.24a | 7.54± 0.35b | 2.45± 0.32a | 5.42± 0.94a | 53.40±1.25b | 30.06±0.88b | 0.24± 0.04a | 0.17± 0.01a | 9.71± 0.23a | 12.96±0.13b | |
48 | 63.44±0.10a | 92.85±0.14a | 9.22± 0.17a | 1.53± 0.03a | 5.51± 0.74a | 53.94±0.13b | 30.17±0.42b | 0.34± 0.01a | 0.27± 0.00a | 6.16± 0.48ab | 9.74± 0.19b |
Table 6 Determination of nutritional components during the fermentation of whole crop corn silage
天数Days/d | 项目Item/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | DMR | CP | EE | Ash | NDF | ADF | Ca | P | WSC | Starch | ||
CK | 0 | 65.44±0.10a | 95.77±0.14a | 9.05±0.70a | 2.56±0.39a | 5.45±0.93a | 58.57±0.53a | 35.47±0.38a | 0.20±0.03a | 0.16±0.00a | 12.37±0.08a | 18.30±0.94a |
24 | 63.44±0.19b | 92.85±0.28b | 10.17±1.10a | 2.57±0.41a | 5.58±1.17a | 56.02±0.54a | 32.92±0.77a | 0.25±0.04a | 0.16±0.01a | 8.58±0.37b | 17.41±2.40a | |
48 | 62.06±0.10b | 90.81±0.14b | 10.67±1.78a | 1.73±0.32a | 6.45±0.46a | 54.55±0.38ab | 32.58±0.25a | 0.33±0.03a | 0.30±0.03a | 5.15±0.39b | 14.30±2.97a | |
L | 0 | 65.33±0.17a | 95.61±0.24a | 8.89±0.20a | 2.59±0.33a | 5.23±0.64a | 57.67±0.19a | 35.04±0.73a | 0.21±0.03a | 0.16±0.00a | 12.50±0.04a | 18.62±0.86a |
24 | 64.17±0.17a | 93.90±0.24a | 9.52±0.62a | 2.33±0.40a | 5.76±1.11a | 54.06±0.63b | 30.71±0.36b | 0.24±0.04a | 0.16±0.00a | 9.99±0.20a | 13.02±0.17b | |
48 | 63.39±0.10a | 92.76±0.14a | 10.85±0.78a | 1.83± 0.17a | 6.20± 0.36a | 54.15±0.60ab | 30.53±0.28b | 0.29± 0.03a | 0.29± 0.01a | 6.90± 0.45a | 8.84± 0.58b | |
A | 0 | 65.17±0.17a | 95.37±0.24a | 8.73± 0.19a | 2.52± 0.39a | 5.33± 1.35a | 58.26±0.39a | 35.30±1.04a | 0.20± 0.02a | 0.16± 0.00a | 12.36±0.02a | 18.22±0.21a |
24 | 63.44±0.19b | 92.85±0.28b | 9.68± 1.05a | 2.44± 0.23a | 5.48± 0.74a | 55.97±0.30a | 32.80±0.36a | 0.24± 0.04a | 0.16± 0.00a | 8.53± 0.12b | 17.36±2.32a | |
48 | 62.06±0.10b | 90.81±0.14b | 10.22±1.88a | 1.77± 0.36a | 6.11± 0.61a | 54.82±0.08a | 32.38±0.42a | 0.32± 0.02a | 0.28± 0.02a | 5.14± 0.73b | 14.11±2.71a | |
L+A | 0 | 65.28±0.25a | 95.53±0.37a | 9.04± 0.18a | 2.48± 0.27a | 5.22± 0.60a | 57.99±0.66a | 34.77±0.62a | 0.19± 0.00a | 0.16± 0.01a | 12.29±0.30a | 18.56±0.37a |
24 | 64.17±0.17a | 93.90±0.24a | 7.54± 0.35b | 2.45± 0.32a | 5.42± 0.94a | 53.40±1.25b | 30.06±0.88b | 0.24± 0.04a | 0.17± 0.01a | 9.71± 0.23a | 12.96±0.13b | |
48 | 63.44±0.10a | 92.85±0.14a | 9.22± 0.17a | 1.53± 0.03a | 5.51± 0.74a | 53.94±0.13b | 30.17±0.42b | 0.34± 0.01a | 0.27± 0.00a | 6.16± 0.48ab | 9.74± 0.19b |
指标Item | CK | L | A | L+A |
---|---|---|---|---|
TDN | 59.90±2.33a | 60.50±0.50a | 59.73±1.03a | 59.20±2.03a |
NEL | 1.17±0.07a | 1.17±0.02a | 1.15±0.031a | 1.12±0.03a |
NEM | 1.45±0.07a | 1.47±0.02a | 1.44±0.03a | 1.43±0.06a |
NEG | 0.95±0.01b | 1.01±0.02ab | 1.03±0.04ab | 1.06±0.09a |
RFQ | 130.00±14.73a | 134.00±4.58a | 128.67±9.61a | 122.67±7.64a |
产奶量(Kg Milk) | 1115.33±94.85a | 1126.00±26.00a | 1092.00±45.13a | 1061.33±55.90a |
Table 7 Feeding value of whole crop corn silage
指标Item | CK | L | A | L+A |
---|---|---|---|---|
TDN | 59.90±2.33a | 60.50±0.50a | 59.73±1.03a | 59.20±2.03a |
NEL | 1.17±0.07a | 1.17±0.02a | 1.15±0.031a | 1.12±0.03a |
NEM | 1.45±0.07a | 1.47±0.02a | 1.44±0.03a | 1.43±0.06a |
NEG | 0.95±0.01b | 1.01±0.02ab | 1.03±0.04ab | 1.06±0.09a |
RFQ | 130.00±14.73a | 134.00±4.58a | 128.67±9.61a | 122.67±7.64a |
产奶量(Kg Milk) | 1115.33±94.85a | 1126.00±26.00a | 1092.00±45.13a | 1061.33±55.90a |
项目Item | CK | L | A | L+A |
---|---|---|---|---|
CHO | 81.15±2.54a | 81.12±1.29a | 81.9±2.84a | 83.74±0.87a |
CC | 4.86±0.66a | 3.78±0.55a | 3.58±1.11a | 3.59±0.89a |
CB1 | 14.30±2.97a | 8.84±0.58b | 14.11±2.71a | 9.74±0.19b |
CA | 5.15±0.39b | 6.90±0.45a | 5.14±0.73b | 6.16±0.48ab |
Table 8 Changes of carbohydrate composition in CNCPS system
项目Item | CK | L | A | L+A |
---|---|---|---|---|
CHO | 81.15±2.54a | 81.12±1.29a | 81.9±2.84a | 83.74±0.87a |
CC | 4.86±0.66a | 3.78±0.55a | 3.58±1.11a | 3.59±0.89a |
CB1 | 14.30±2.97a | 8.84±0.58b | 14.11±2.71a | 9.74±0.19b |
CA | 5.15±0.39b | 6.90±0.45a | 5.14±0.73b | 6.16±0.48ab |
[1] |
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, et al. Silage review:Mycotoxins in silage:Occurrence, effects, prevention, and mitigation[J]. J Dairy Sci, 2018, 101(5):4034-4059.
doi: S0022-0302(18)30325-4 pmid: 29685276 |
[2] | Mcdonald P. Biochemistry of Silage[M]. Wiley, 1981. |
[3] | Ohmomo S, Tanaka O, Kitamoto HK, et al. Silage and microbial performance, old story but new problems[J]. Jpn Agric Res Q:JARQ, 2002, 36(2):59-71. |
[4] |
Oladosu Y, Rafii MY, Abdullah N, et al. Fermentation quality and additives:a case of rice straw silage[J]. Biomed Res Int, 2016, 2016:7985167.
doi: 10.1155/2016/7985167 pmid: 27429981 |
[5] | 徐振上. 优良青贮剂菌株选育及对青贮饲料品质影响[D]. 济南:山东大学, 2018. |
Xu ZS. Selection of excellent inoculant strains and their effects on corn stover silages[D]. Jinan:Shandong University, 2018. | |
[6] |
Danner H, Holzer M, Mayrhuber E, et al. Acetic acid increases stability of silage under aerobic conditions[J]. Appl Environ Microbiol, 2003, 69(1):562-567.
doi: 10.1128/AEM.69.1.562-567.2003 URL |
[7] |
Zhang Q, Li X, Zhao M, et al. Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymus chinensis silage[J]. Grass Forage Sci, 2016, 71(3):472-481.
doi: 10.1111/gfs.2016.71.issue-3 URL |
[8] | 孙国君, 何玉龙, 王展鹏. 不同季节对苜蓿青贮饲料中霉菌毒素含量的影响[J]. 饲料研究, 2016(9):43-46. |
Sun GJ, He YL, Wang ZP. Effects of different seasons on the content of mycotoxins in alfalfa silage[J]. Feed Res, 2016(9):43-46. | |
[9] |
Richard E, Heutte N, Sage L, et al. Toxigenic fungi and mycotoxins in mature corn silage[J]. Food Chem Toxicol, 2007, 45(12):2420-2425.
pmid: 17655998 |
[10] |
Kabak B, Dobson ADW, Var I. Strategies to prevent mycotoxin contamination of food and animal feed:a review[J]. Crit Rev Food Sci Nutr, 2006, 46(8):593-619.
doi: 10.1080/10408390500436185 URL |
[11] | 李思齐, 吕素芳, 李峰, 等. 鲁北地区全株玉米青贮饲料霉菌毒素检测分析[J]. 中国草食动物科学, 2018, 38(5):27-29. |
Li SQ, Lü SF, Li F, et al. Detection and analysis on mycotoxins in whole corn silage in north Shandong[J]. China Herbiv Sci, 2018, 38(5):27-29. | |
[12] | 黄俊恒, 黄广明. 2017 年21省市饲料及饲料原料霉菌毒素污染状况分析[J]. 养猪, 2018(3):20-22. |
Huang JH, Huang GM. Analysis of mycotoxin contamination in feed and feed ingredients in 21 provinces and cities in 2017[J]. Swine Prod, 2018(3):20-22. | |
[13] | 左瑞雨, 常娟, 尹清强, 等. 乳酸菌和枯草芽孢杆菌对黄曲霉毒素产生菌生长的抑制作用研究[J]. 河南农业科学, 2011, 40(3):145-148. |
Zuo RY, Chang J, Yin QQ, et al. Inhibition of Lactobacillus and Bacillus subtilis on the growth of Aspergillus flavus[J]. J Henan Agric Sci, 2011, 40(3):145-148. | |
[14] |
Guimarães A, Santiago A, Teixeira JA, et al. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum[J]. Int J Food Microbiol, 2018, 264:31-38.
doi: S0168-1605(17)30467-1 pmid: 29107194 |
[15] |
Poornachandra Rao K, Deepthi BV, Rakesh S, et al. Antiaflatoxigenic potential of cell-free supernatant from Lactobacillus plantarum MYS44 against Aspergillus parasiticus[J]. Probiotics Antimicrob Proteins, 2019, 11(1):55-64.
doi: 10.1007/s12602-017-9338-y pmid: 29064057 |
[16] | 侯鑫狄, 侯美玲, 贾玉山, 等. 添加乳酸菌和纤维素酶对黄花苜蓿青贮品质的影响[J]. 中国草地学报, 2017, 39(6):95-98, 105. |
Hou XD, Hou ML, Jia YS, et al. Effects of adding lactic acid bacteria and cellulose on silage quality of Medicago falcata[J]. Chin J Grassland, 2017, 39(6):95-98, 105. | |
[17] | 季婧, 多田琦, 梅错, 等. 混播比例对紫花苜蓿/无芒雀麦青贮品质的影响[J]. 中国草地学报, 2017, 39(2):19-25. |
Ji J, Duo TQ, Mei C, et al. Effect of Mix-sowing ratio on silage quality of Medicago sativa L. and Bromus inermis leyss[J]. Chin J Grassland, 2017, 39(2):19-25. | |
[18] | 何慧英. 乳酸菌的筛选及其对青贮饲料有氧稳定性的研究[D]. 济南:山东大学, 2018. |
He HY. Isolation of lactic acid bacteria and their effects on aerobic stability in silage[D]. Jinan:Shandong University, 2018. | |
[19] | AOAC. Official methods of analysis of AOAC[S]. 18th ed. Association of Analytical Chemists, Arlington, VA, 2005. |
[20] |
van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci, 1991, 74(10):3583-3597.
pmid: 1660498 |
[21] | 国家市场监督管理总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准:饲料中钙的测定 GB/T 6436—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation. Standardization Administration of the People’s Republic of China. National Standard(Recommended)of the People’s Republic of China:Determination of calcium in feeds. GB/T 6436—2018[S]. Beijing: Standards Press of China, 2018. | |
[22] | 国家市场监督管理总局, 国家标准化管理委员会. 中华人民共和国推荐性国家标准:饲料中总磷的测定分光光度法 GB/T 6437—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation. Standardization Administration of the People’s Republic of China. National Standard(Recommended)of the People’s Republic of China:Determination of phosphorus in feeds—Spectrophotometry. GB/T 6437—2018[S]. Beijing: Standards Press of China, 2018. | |
[23] | 李合生. 植物生理生化试验原理与技术[M]. 北京: 高等教育出版社, 2001, 194-201. |
Li HS. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2001, 194-201. | |
[24] | 郭冬生. 反刍动物日粮组合效应对瘤胃发酵和可利用粗蛋白的影响研究[D]. 北京:中国农业大学, 2004. |
Guo DS. Influence of associated effects on utilizable crude protein of feeds for ruminants and rumen fermentation in vitro[D]. Beijing:China Agricultural University, 2004. | |
[25] |
Hu W, Schmidt RJ, McDonell EE, et al. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents[J]. J Dairy Sci, 2009, 92(8):3907-3914.
doi: 10.3168/jds.2008-1788 pmid: 19620673 |
[26] | 尹雪, 郭雪峰, 帕提古丽·毛拉红, 等. 传统发面面肥中乳酸菌的分离与鉴定[J]. 食品工业科技, 2017, 38(14):141-145. |
Yin X, Guo XF, Patiguli·MLH, et al. Isolation and identification of lactic acid bacteria from Chinese traditional sourdough[J]. Sci Technol Food Ind, 2017, 38(14):141-145. | |
[27] |
Hamidi A, Mirnejad R, Yahaghi E, et al. The aflatoxin B1 isolating potential of two lactic acid bacteria[J]. Asian Pac J Trop Biomed, 2013, 3(9):732-736.
doi: 10.1016/S2221-1691(13)60147-1 URL |
[28] |
Ahlberg S, Joutsjoki V, Laurikkala S, et al. Aspergillus flavus growth inhibition by Lactobacillus strains isolated from traditional fermented Kenyan milk and maize products[J]. Arch Microbiol, 2017, 199(3):457-464.
doi: 10.1007/s00203-016-1316-3 pmid: 27816987 |
[29] |
Gomaa EZ, Abdelall MF, El-Mahdy OM. Detoxification of aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei, isolated from dairy products[J]. Probiotics Antimicrob Proteins, 2018, 10(2):201-209.
doi: 10.1007/s12602-017-9350-2 URL |
[30] | 李院, 魏新元, 王静, 等. 抑制青霉菌乳酸菌的分离、鉴定及抑菌物质分析[J]. 食品科学, 2015, 36(21):150-155. |
Li Y, Wei XY, Wang J, et al. Isolation and identification of lactic acid bacteria inhibiting Penicillium and analysis of their antimicrobial components[J]. Food Sci, 2015, 36(21):150-155. | |
[31] |
Moon YS, Kim HM, Chun HS, et al. Organic acids suppress aflatoxin production via lowering expression of aflatoxin biosynjournal-related genes in Aspergillus flavus[J]. Food Control, 2018, 88:207-216.
doi: 10.1016/j.foodcont.2018.01.017 URL |
[32] |
Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, et al. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production[J]. Int J Food Microbiol, 2014, 173:30-35.
doi: 10.1016/j.ijfoodmicro.2013.12.016 pmid: 24412414 |
[33] | 马惠茹, 石晶红, 赵智香, 等. 6株益生菌对AFB1吸附脱毒效果的研究[J]. 饲料研究, 2015(16):34-36. |
Ma HR, Shi JH, Zhao ZX, et al. Study on the effect of 6 strains of probiotics on the adsorption and detoxification of AFB1[J]. Feed Res, 2015(16):34-36. | |
[34] |
Padmaja PB, Selvam SP. Determination of antiaflatoxigenic effect of probiotic strains in Sorghum bicolour[J]. Biosci, Biotech Res Asia, 2016, 13(2):1095-1100.
doi: 10.13005/bbra/ URL |
[35] |
Prathivadi Bayankaram P, Sellamuthu PS. Antifungal and anti-aflatoxigenic effect of probiotics against Aspergillus flavus and Aspergillus parasiticus[J]. Toxin Rev, 2016, 35(1/2):10-15.
doi: 10.1080/15569543.2016.1178147 URL |
[36] |
Asurmendi P, García MJ, Ruíz F, et al. Biological control of AFB1-producing Aspergillus section Flavi strains isolated from brewer’s grains, alternative feed intended for swine production in Argentina[J]. J Environ Sci Health B, 2016, 51(7):477-481.
doi: 10.1080/03601234.2016.1159460 URL |
[37] | 苗芳. 同/异质型乳酸菌对玉米青贮品质及有氧稳定性的影响[D]. 石河子:石河子大学, 2017. |
Miao F. The effects of Homo-with or without heterofermentative lactic acid bacteria on the quality and aerobic stability of the corn silage[D]. Shihezi:Shihezi University, 2017. | |
[38] | 刘帅. 鼠李糖乳杆菌对全株玉米青贮和发酵全混合日粮品质的影响[D]. 哈尔滨:东北农业大学, 2019. |
Liu S. Effect of supplementting Lactobacillus rhamnosus GG on the quality of whole plant corn silage and fermented total mixed ration[D]. Harbin:Northeast Agricultural University, 2019. | |
[39] | 张适, 吴琼, 尤欢, 等. 添加不同乳酸菌对全株玉米青贮发酵品质的影响[J]. 饲料研究, 2019, 42(9):55-58. |
Zhang S, Wu Q, You H, et al. Effect of different lactic acid bacteria on fermentation quality of whole corn silage[J]. Feed Res, 2019, 42(9):55-58. | |
[40] | 袁仕改. 不同添加剂对青贮玉米发酵品质及其有氧稳定性的影响[D]. 贵阳:贵州大学, 2018. |
Yuan SG. Effects of different additives on fermentation quality and aerobic stability of silage corn[D]. Guiyang:Guizhou University, 2018. | |
[41] | 梁小玉, 季杨, 易军, 等. 混合比例和添加剂对菊苣与青贮玉米混合青贮品质的影响[J]. 草业学报, 2018, 27(2):173-181. |
Liang XY, Ji Y, Yi J, et al. Effects of mixing ratio and additives on ensilage efficiency of mixed chicory and silage maize[J]. Acta Prataculturae Sin, 2018, 27(2):173-181. | |
[42] | 王亚芳, 姜富贵, 成海建, 等. 不同青贮添加剂对全株玉米青贮营养价值、发酵品质和瘤胃降解率的影响[J]. 动物营养学报, 2020, 32(6):2765-2774. |
Wang YF, Jiang FG, Cheng HJ, et al. Effects of different silage additives on nutritional value, fermentation quality and rumen degradability of whole corn silage[J]. Chin J Animal Nutr, 2020, 32(6):2765-2774. | |
[43] | 尉小强, 罗仕伟, 哈志刚, 等. 添加乳酸菌和有机酸制剂对全株玉米青贮品质、微生物数量和有氧稳定性的影响[J]. 草学, 2018(S1):63-68. |
Yu XQ, Luo SW, Ha ZG, et al. The effect on fermentation quality, microbe quantity and aerobic stability of whole-plant corn by adding lactic acid bacteria and organic acid preparations[J]. J Grassland Forage Sci, 2018(S1):63-68. | |
[44] | 张相伦, 游伟, 赵红波, 等. 乳酸菌制剂对全株玉米青贮品质及营养成分的影响[J]. 动物营养学报, 2018, 30(1):336-342. |
Zhang XL, You W, Zhao HB, et al. Effects of lactic acid bacteria preparation on quality and nutrient composition of whole corn silage[J]. Chin J Animal Nutr, 2018, 30(1):336-342. | |
[45] |
Chilson JM, Rezamand P, Drewnoski ME, et al. Effect of homofermentative lactic acid bacteria and exogenous hydrolytic enzymes on the ensiling characteristics and rumen degradability of alfalfa and corn silages[J]. Prof Animal Sci, 2016, 32(5):598-604.
doi: 10.15232/pas.2015-01494 URL |
[46] | 王赫, 朱风华, 陈甫, 等. 不同发酵时间对乳酸菌发酵饲料中主要营养物质主要营养物质、乳酸菌和乳酸含量的影响[J]. 中国家禽, 2017, 39(10):27-31. |
Wang H, Zhu FH, Chen F, et al. Effects of different fermentation time on main nutrients, lactic acid bacteria and lactic acid in feed fermented with lactic acid bacteria[J]. China Poult, 2017, 39(10):27-31. |
[1] | LIU Duan-mu, WU Yi, LIU Yun, LIANG Zhi-hong. Screening,Identification and Antifungal Properties of a Bacterium with Antagonistic Activities Against Mycotoxin-producing Aspergillus spp. [J]. Biotechnology Bulletin, 2019, 35(8): 42-50. |
[2] | GENG Long-po, WANG Xin-wang, HUANG Lu-hua, DENG Ji-li, WANG Shi-hua, ZHANG Feng. Expression Analysis of Ribosomal Protein Genes in Aspergillus flavus [J]. Biotechnology Bulletin, 2018, 34(4): 194-200. |
[3] | Pang Zhiwei, Lu Xu, Hu Jiangchun, Cheng Xiaoqi, Wang Nan, Song Yanling. Screening and Identification of a Sponge-associated Fungus HMP-F66 Inducing Oxidative Burst in Tobacco Cell Suspensions [J]. Biotechnology Bulletin, 2015, 31(7): 174-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||