Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 52-59.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1495
Previous Articles Next Articles
LIN Ying1,2(), YANG Wen-li2, ZHOU Ling-yan1(), JIANG Da-gang2()
Received:
2021-12-03
Online:
2022-08-26
Published:
2022-09-14
Contact:
ZHOU Ling-yan,JIANG Da-gang
E-mail:1243964793@qq.com;lingyanzh@163.com;dagangj@scau.edu.cn
LIN Ying, YANG Wen-li, ZHOU Ling-yan, JIANG Da-gang. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials[J]. Biotechnology Bulletin, 2022, 38(8): 52-59.
Fig.1 Number of certified reference materials and involved transgenic crop events of three major economies The information come from website(https://www.aocs.org; https://crm.jrc.ec;https://www.ncrm.org)related to public certificates of reference material,the certification report and genetically modified testing reference materials. The last day of searching information is Aug. 10,2021. The following charts are from the same source
研发机构 Research institution | 标准物质名称 Name of reference materials | 转化体名称Transgenic event | 转化性状 Transgenic character | 规格 Norms | 价格 Price/¥ |
---|---|---|---|---|---|
美国油脂化学家学会 | T45 Leaf Tissue DNA | T45 | 抗草铵膦除草剂 | 10 µg | 1 692.69 |
Topas 19/2 Leaf Tissue DNA | Topas 19/2 | 抗草铵膦除草剂、抗生素抗性 | 10 µg | 1724.3 | |
MON87411 Powder | MON87411 | 抗草甘膦除草剂、抗虫 | 10 g | 757.26 | |
MON88701 Powder | MON88701 | 抗草铵膦和麦草畏除草剂 | 10 g | 757.26 | |
欧盟联合研究中心 | Bt11 MAIZE(nominal 100% GMO) | Bt11 | 抗虫 | - | 426.86 |
DAS-81910-7 COTTON(nominal 100% GMO) | DAS-81910-7 | 抗除草剂2、4-二氯甲氧乙酸 | - | 504.47 | |
SOYA 305423(lea 1-nominal 0.5% GMO) | 305423S | 抗对乙酰乳酸合酶抑制除草剂 | - | 465.67 | |
73496 RAPESEED(nominal 100% GMO) | 73496 | 抗草甘膦除草剂 | - | 520.00 | |
AV43-6-G7 POTATO(nominal 100% GMO) | AV43-6-G7 | 工业合成淀粉 | - | 613.13 |
Table 1 Certified reference materials of agricultural genetically modified crops in United States and European Union
研发机构 Research institution | 标准物质名称 Name of reference materials | 转化体名称Transgenic event | 转化性状 Transgenic character | 规格 Norms | 价格 Price/¥ |
---|---|---|---|---|---|
美国油脂化学家学会 | T45 Leaf Tissue DNA | T45 | 抗草铵膦除草剂 | 10 µg | 1 692.69 |
Topas 19/2 Leaf Tissue DNA | Topas 19/2 | 抗草铵膦除草剂、抗生素抗性 | 10 µg | 1724.3 | |
MON87411 Powder | MON87411 | 抗草甘膦除草剂、抗虫 | 10 g | 757.26 | |
MON88701 Powder | MON88701 | 抗草铵膦和麦草畏除草剂 | 10 g | 757.26 | |
欧盟联合研究中心 | Bt11 MAIZE(nominal 100% GMO) | Bt11 | 抗虫 | - | 426.86 |
DAS-81910-7 COTTON(nominal 100% GMO) | DAS-81910-7 | 抗除草剂2、4-二氯甲氧乙酸 | - | 504.47 | |
SOYA 305423(lea 1-nominal 0.5% GMO) | 305423S | 抗对乙酰乳酸合酶抑制除草剂 | - | 465.67 | |
73496 RAPESEED(nominal 100% GMO) | 73496 | 抗草甘膦除草剂 | - | 520.00 | |
AV43-6-G7 POTATO(nominal 100% GMO) | AV43-6-G7 | 工业合成淀粉 | - | 613.13 |
研发机构 Research institution | 标准品名称 Name of reference materials | 转化事件 Transgenic event | 转化性状 Transgenic character | 规格 Norms | 价格 Price/¥ |
---|---|---|---|---|---|
中国计量科学研究院 | 转基因BT63水稻种子粉基体标准物质 | BT63 | 抗虫 | 1 g | 3 600 |
转基因水稻BT63质粒分子标准物质 | BT63 | 抗虫 | 500 μL | 720 | |
转基因大豆MON89788质粒分子标准物质 | MON89788 | - | 500 μL | 720 | |
中国农业科学院油料作物研究所,农业部科技发展中心,中国计量科学研究院 | 转基因玉米双抗12-5基因组DNA标准物质 | 双抗12-5 | 双价抗虫 | 100 μL | - |
中国农业科学院油料作物研究所,农业农村部科技发展中心,中国农业科学院生物技术研究所 | 转基因水稻G6H1基因组DNA标准物质 | G6H1 | 抗虫耐除草剂 | 100 μL | - |
转基因水稻TT51-1基因组DNA标准物质 | TT51-1 | 抗虫 | 100 μL | - | |
转基因水稻科丰6号基因组DNA标准物质 | 科丰6号 | 双价抗虫 | - | - | |
转基因水稻克螟稻基因组DNA标准物质 | 克螟稻 | 抗虫 | - | - | |
农业部科技发展中心,中国农业科学院油料作物研究所 | 转基因大豆MON89788基体标准物质 | MON89788 | 抗草甘膦除草剂 | - | - |
农业农村部科技发展中心,中国农业科学院生物技术研究所,上海交通大学 | 转基因水稻G6H1基体标准物质 | G6H1 | 抗虫、耐除草剂 | - | - |
Table 2 Some certified reference materials of agricultural genetically modified crops in China
研发机构 Research institution | 标准品名称 Name of reference materials | 转化事件 Transgenic event | 转化性状 Transgenic character | 规格 Norms | 价格 Price/¥ |
---|---|---|---|---|---|
中国计量科学研究院 | 转基因BT63水稻种子粉基体标准物质 | BT63 | 抗虫 | 1 g | 3 600 |
转基因水稻BT63质粒分子标准物质 | BT63 | 抗虫 | 500 μL | 720 | |
转基因大豆MON89788质粒分子标准物质 | MON89788 | - | 500 μL | 720 | |
中国农业科学院油料作物研究所,农业部科技发展中心,中国计量科学研究院 | 转基因玉米双抗12-5基因组DNA标准物质 | 双抗12-5 | 双价抗虫 | 100 μL | - |
中国农业科学院油料作物研究所,农业农村部科技发展中心,中国农业科学院生物技术研究所 | 转基因水稻G6H1基因组DNA标准物质 | G6H1 | 抗虫耐除草剂 | 100 μL | - |
转基因水稻TT51-1基因组DNA标准物质 | TT51-1 | 抗虫 | 100 μL | - | |
转基因水稻科丰6号基因组DNA标准物质 | 科丰6号 | 双价抗虫 | - | - | |
转基因水稻克螟稻基因组DNA标准物质 | 克螟稻 | 抗虫 | - | - | |
农业部科技发展中心,中国农业科学院油料作物研究所 | 转基因大豆MON89788基体标准物质 | MON89788 | 抗草甘膦除草剂 | - | - |
农业农村部科技发展中心,中国农业科学院生物技术研究所,上海交通大学 | 转基因水稻G6H1基体标准物质 | G6H1 | 抗虫、耐除草剂 | - | - |
标准编号 Standard code | 标准名称 Name of standard |
---|---|
农业部1782号公告-8-2012 | 转基因植物及其产品成分检测 基体标准物质制备技术规范 |
农业部1782号公告-9-2012 | 转基因植物及其产品成分检测 标准物质试用评价技术规范 |
农业部2259号公告-1-2015 | 转基因植物及其产品成分检测 基体标准物质定值技术规范 |
农业部2259号公告-2-2015 | 转基因植物及其产品成分检测 玉米标准物质候选物繁殖与鉴定技术规范 |
农业部2259号公告-3-2015 | 转基因植物及其产品成分检测 棉花标准物质候选物繁殖与鉴定技术规范 |
农业农村部公告第111号-1-2018 | 转基因植物及其产品成分检测 基因组DNA标准物质制备技术规范 |
农业农村部公告第111号-2-2018 | 转基因植物及其产品成分检测 基因组DNA标准物质定值技术规范 |
农业农村部公告第323号-6-2020 | 转基因植物及其产品成分检测 油菜标准物质原材料繁殖与鉴定技术规范 |
农业农村部公告第323号-7-2020 | 转基因植物及其产品成分检测 大豆标准物质原材料繁殖与鉴定技术规范 |
农业农村部公告第323号-8-2020 | 转基因植物及其产品成分检测 质粒DNA标准物质制备技术规范 |
农业农村部公告第323号-22-2020 | 转基因植物及其产品成分检测 水稻标准物质原材料繁殖与鉴定技术规范 |
Table 3 Some technical specifications of agricultural gen-etically modified testing reference materials in China
标准编号 Standard code | 标准名称 Name of standard |
---|---|
农业部1782号公告-8-2012 | 转基因植物及其产品成分检测 基体标准物质制备技术规范 |
农业部1782号公告-9-2012 | 转基因植物及其产品成分检测 标准物质试用评价技术规范 |
农业部2259号公告-1-2015 | 转基因植物及其产品成分检测 基体标准物质定值技术规范 |
农业部2259号公告-2-2015 | 转基因植物及其产品成分检测 玉米标准物质候选物繁殖与鉴定技术规范 |
农业部2259号公告-3-2015 | 转基因植物及其产品成分检测 棉花标准物质候选物繁殖与鉴定技术规范 |
农业农村部公告第111号-1-2018 | 转基因植物及其产品成分检测 基因组DNA标准物质制备技术规范 |
农业农村部公告第111号-2-2018 | 转基因植物及其产品成分检测 基因组DNA标准物质定值技术规范 |
农业农村部公告第323号-6-2020 | 转基因植物及其产品成分检测 油菜标准物质原材料繁殖与鉴定技术规范 |
农业农村部公告第323号-7-2020 | 转基因植物及其产品成分检测 大豆标准物质原材料繁殖与鉴定技术规范 |
农业农村部公告第323号-8-2020 | 转基因植物及其产品成分检测 质粒DNA标准物质制备技术规范 |
农业农村部公告第323号-22-2020 | 转基因植物及其产品成分检测 水稻标准物质原材料繁殖与鉴定技术规范 |
标准物质类型 Type | 特异制备阶段 Specific preparation stage | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
基体标准物质 | 真空干燥;水分含量测定;粒度测量;DNA提取效率比较 | 特质与被检样品接近,结果更稳定可靠;可用于蛋白质检测;量值范围广;适用性较广 | 测量程序复杂,成本高;原料鉴定要求高;用量需求大;量值表示与实际含量有差异;不能扩繁;一种基体标准物质只能用于一种作物的检验 |
质粒标准物质 | 质粒标准分子构建;质粒制备及鉴定;质粒DNA抽提;适应性鉴定 | 可大量繁殖;不易降解;成本低廉简单;可检测多个转化对象;纯度高;均匀性好;可实现高通量检测 | 容易污染;检测误差较大;假阳性;DNA结构与被检样品的不一致;需要校正 |
基因组DNA标准物质 | 基因组DNA抽提;DNA评价 | 检测技术方便简洁;不确定度可忽略;结构稳定便于储存、用料量少;候选物鉴定较容易;特性与样品接近;质量高 | 不能用于蛋白质检测;需提取大量的DNA;过程繁琐;原料要求严格 |
Table 4 Comparison of three agricultural genetically modified testing reference materials
标准物质类型 Type | 特异制备阶段 Specific preparation stage | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
基体标准物质 | 真空干燥;水分含量测定;粒度测量;DNA提取效率比较 | 特质与被检样品接近,结果更稳定可靠;可用于蛋白质检测;量值范围广;适用性较广 | 测量程序复杂,成本高;原料鉴定要求高;用量需求大;量值表示与实际含量有差异;不能扩繁;一种基体标准物质只能用于一种作物的检验 |
质粒标准物质 | 质粒标准分子构建;质粒制备及鉴定;质粒DNA抽提;适应性鉴定 | 可大量繁殖;不易降解;成本低廉简单;可检测多个转化对象;纯度高;均匀性好;可实现高通量检测 | 容易污染;检测误差较大;假阳性;DNA结构与被检样品的不一致;需要校正 |
基因组DNA标准物质 | 基因组DNA抽提;DNA评价 | 检测技术方便简洁;不确定度可忽略;结构稳定便于储存、用料量少;候选物鉴定较容易;特性与样品接近;质量高 | 不能用于蛋白质检测;需提取大量的DNA;过程繁琐;原料要求严格 |
[1] | 焦悦, 朱鹏宇, 梁晋刚, 等. 国际转基因食品安全评价政策及启示[J]. 生物技术进展, 2021, 11(2):121-127. |
Jiao Y, Zhu PY, Liang JG, et al. International genetically modified food safety evaluation policy and its enlightenment[J]. Curr Biotechnol, 2021, 11(2):121-127. | |
[2] | 梁晋刚, 贺晓云, 武玉花, 等. 中国农业转基因生物安全标准体系现状与展望[J]. 农业生物技术学报, 2020, 28(5):911-917. |
Liang JG, He XY, Wu YH, et al. Current status and prospects of safety standard system for agricultural genetically modified organisms in China[J]. J Agric Biotechnol, 2020, 28(5):911-917. | |
[3] |
吴刚, 金芜军, 谢家建, 等. 欧盟转基因生物安全检测技术现状及启示[J]. 生物技术通报, 2015, 31(12):1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.001 |
Wu G, Jin WJ, Xie JJ, et al. The status and inspiration on the safety detection technology of genetically modified organisms in European union[J]. Biotechnol Bull, 2015, 31(12):1-7. | |
[4] | 陈敏, 张翠敏, 李钟先, 等. 小麦粉标准物质的研制[J]. 食品安全质量检测学报, 2019, 10(12):4020-4026. |
Chen M, Zhang CM, Li ZX, et al. Preparation of the certified reference materials of wheat flour[J]. J Food Saf Qual, 2019, 10(12):4020-4026. | |
[5] | 单露英, 李俊, 李亮, 等. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2021. http://kns.cnki.net/kcms/detail/11.1809.s.20211009.1619.007.html. |
Shan LY Li J, Li L, et al. Development of genetically modified maize(Zea mays L.) NK603 matrix reference material[J]. Acta Agron Sin, 2021. http://kns.cnki.net/kcms/detail/11.1809.s.20211009.1619.007.html. | |
[6] |
王颢潜, 李夏莹, 张丽, 等. 转基因产品检测标准物质量值一致性研究进展[J]. 生物技术通报, 2020, 36(5):2-8.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0013 |
Wang HQ, Li XY, Zhang L, et al. Research progress on the trait value consistency of reference materials for genetically modified organism[J]. Biotechnol Bull, 2020, 36(5):2-8. | |
[7] | 沈平, 李昂, 章秋艳, 等. 转基因产品标准物质概述[J]. 中国生物工程杂志, 2015, 35(4):107-111. |
Shen P, Li A, Zhang QY, et al. Overview for genetically modified organisms detection reference materials in China[J]. China Biotechnol, 2015, 35(4):107-111. | |
[8] |
Guan Q, Wang X, Teng D, et al. Construction of a standard reference plasmid for detecting GM cotton seed meal[J]. Appl Biochem Biotechnol. 2011, 165(1):24-34.
doi: 10.1007/s12010-011-9230-2 URL |
[9] | 董莲华, 隋志伟, 沈平, 等. 转基因玉米NK603基体标准物质研制[J]. 农业生物技术学报, 2013, 21(1):12-18. |
Dong LH, Sui ZW, Shen P, et al. Development of genetically modified maize(Zea mays)line NK603 matrix reference material[J]. J Agric Biotechnol, 2013, 21(1):12-18. | |
[10] | 马卉, 焦小雨, 许学, 等. 转基因水稻筛查检测阳性质粒pUC18-RICE-screen的构建及分子评价[J]. 农业生物技术学报, 2020, 28(7):1177-1192. |
Ma H, Jiao XY, Xu X, et al. Construction and molecular evaluation of A positive plasmid pUC18-RICE-screen for screening detection of transgenic rice(Oryza sativa)[J]. J Agric Biotechnol, 2020, 28(7):1177-1192. | |
[11] | Xu JY, Wan C, Luan SS, et al. Applicability of plasmid calibrant pMON87712 for quantitative detection of the transgenic soybean MON87712[J]. Acta Biochim Biophys Sin:Shanghai, 2021, 53(7):933-942. |
[12] |
Yang Y, Li L, Yang H, et al. Development of certified matrix-based reference material as a calibrator for genetically modified rice G6H1 analysis[J]. J Agric Food Chem, 2018, 66(14):3708-3715.
doi: 10.1021/acs.jafc.8b00468 URL |
[13] |
Jiang Y, Yang H, Quan S, et al. Development of certified matrix-based reference material of genetically modified rice event TT51-1 for real-time PCR quantification[J]. Anal Bioanal Chem, 2015, 407(22):6731-6739.
doi: 10.1007/s00216-015-8836-6 pmid: 26138891 |
[14] |
Wu YH, Li J, Wang YL, et al. Development and application of a general plasmid reference material for GMO screening[J]. Plasmid, 2016, 87/88:28-36.
doi: 10.1016/j.plasmid.2016.08.001 URL |
[15] |
Corbisier P, Pinheiro L, Mazoua S, et al. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials[J]. Anal Bioanal Chem, 2015, 407(7):1831-1840.
doi: 10.1007/s00216-015-8458-z pmid: 25600685 |
[16] | 李俊, 李夏莹, 李亮, 等. 转基因大豆MON89788纯品粉末标准物质的研制及定值[J]. 农业生物技术学报, 2020, 28(6):1084-1095. |
Li J, Li XY, Li L, et al. Development and characterization of pure matrix reference materials for detection of transgenic soybean(Glycine max)MON89788[J]. J Agric Biotechnol, 2020, 28(6):1084-1095. | |
[17] |
李俊, 李亮, 李夏莹, 等. 转基因玉米MIR604基体标准物质研制[J]. 作物学报, 2020, 46(4):473-483.
doi: 10.3724/SP.J.1006.2020.93047 |
Li J, Li L, Li XY, et al. Development of genetically modified maize MIR604 matrix reference materials[J]. Acta Agron Sin, 2020, 46(4):473-483.
doi: 10.3724/SP.J.1006.2020.93047 URL |
|
[18] | 张丽, 宋贵文, 沈平, 等. 转基因大豆MON89788基体标准物质的研制[J]. 农业生物技术学报, 2016, 24(2):295-304. |
Zhang L, Song GW, Shen P, et al. Development of genetically modified soybean(Glycine max)MON89788 matrix reference material[J]. J Agric Biotechnol, 2016, 24(2):295-304. | |
[19] |
Li J, Wu YH, Li XF, et al. Developing a matrix reference material for screening of transgenic rice[J]. Anal Bioanal Chem, 2015, 407(30):9153-9163.
doi: 10.1007/s00216-015-9081-8 URL |
[20] |
Kim JH, Park SB, Roh HJ, et al. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule[J]. Food Chem, 2017, 226:187-192.
doi: 10.1016/j.foodchem.2017.01.065 URL |
[21] | 邢宇俊, 陆丹丹, 吴季荣, 等. 用于检测转基因作物中调控元件的质粒标准分子的构建[J]. 江苏农业学报, 2018, 34(6):1392-1400. |
Xing YJ, Lu DD, Wu JR, et al. Construction of standard plasmid molecules of regulatory elements to detect genetically modified crop[J]. Jiangsu J Agric Sci, 2018, 34(6):1392-1400. | |
[22] | 李俊, 李夏莹, 王颢潜, 等. 转基因油菜筛查阳性质粒分子的研制及应用[J]. 中国农业科学, 2020, 53(7):1322-1337. |
Li J, Li XY, Wang HQ, et al. Development and application of plasmid reference molecule for genetically modified rapeseed screening[J]. Sci Agric Sin, 2020, 53(7):1322-1337. | |
[23] |
Wang XJ, Tang QL, Dong L, et al. Construction of a standard reference plasmid containing seven target genes for the detection of transgenic cotton[J]. Plasmid, 2014, 74:39-44.
doi: 10.1016/j.plasmid.2014.05.005 URL |
[24] |
Pi LQ, Li X, Cao YW, et al. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events[J]. Anal Bioanal Chem, 2015, 407(10):2877-2886.
doi: 10.1007/s00216-015-8517-5 URL |
[25] | 李亮, 臧超, 等. 转基因水稻克螟稻2号定量检测用质粒标准分子研制及不确定度评价[J]. 中国生物工程杂志, 2012, 32(10):19-24. |
Li L, Zang C, et al. Construction of a reference plasmid for the quantification of genetically modified rice kemingdao 2 and uncertainty evaluation[J]. China Biotechnol, 2012, 32(10):19-24. | |
[26] | 李亮, 王晶, 隋志伟, 等. 转基因定量检测用质粒分子标准物质研究进展[J]. 生物技术通报, 2012(2):48-52. |
Li L, Wang J, Sui ZW, et al. Advances in reference plasmids for the quantitative detection of genetically modified crops[J]. Biotechnol Bull, 2012(2):48-52. | |
[27] |
Li J, Zhang L, Li L, et al. Development of genomic DNA certified reference materials for genetically modified rice kefeng 6[J]. ACS Omega, 2020, 5(34):21602-21609.
doi: 10.1021/acsomega.0c02274 URL |
[28] |
Li J, et al. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD[J]. Anal Bioanal Chem, 2020, 412(25):7007-7016.
doi: 10.1007/s00216-020-02834-y URL |
[29] | 董莲华, 赵正宜, 李亮, 等. 转基因植物标准物质研究进展[J]. 农业生物技术学报, 2012, 20(2):203-210. |
Dong LH, Zhao ZY, Li L, et al. Advance in developing genetically modified plant reference material[J]. J Agric Biotechnol, 2012, 20(2):203-210. | |
[30] |
Bhat S, Emslie KR. Digital polymerase chain reaction for characterisation of DNA reference materials[J]. Biomol Detect Quantification, 2016, 10:47-49.
doi: 10.1016/j.bdq.2016.04.001 URL |
[31] |
Caprioara-Buda M, Meyer W, Jeynov B, et al. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms[J]. Anal Bioanal Chem, 2012, 404(1):29-42.
doi: 10.1007/s00216-012-6104-6 pmid: 22638881 |
[32] | 张丽, 等. 转基因产品检测标准物质的定值和不确定度研究进展[J]. 农业生物技术学报, 2014, 22(3):362-371. |
Zhang L, et al. Research progress on value characterization and uncertainty evaluation of reference materials for genetically modified organisms[J]. J Agric Biotechnol, 2014, 22(3):362-371. | |
[33] |
Wu YH, Li J, Li XY, et al. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms[J]. Anal Bioanal Chem, 2019, 411(9):1729-1744.
doi: 10.1007/s00216-019-01576-w URL |
[34] | 李亮, 隋志伟, 王晶, 等. 基于数字PCR的单分子DNA定量技术研究进展[J]. 生物化学与生物物理进展, 2012, 39(10):1017-1023. |
Li L, Sui ZW, Wang J, et al. Progress of digital PCR for single DNA quantification[J]. Prog Biochem Biophys, 2012, 39(10):1017-1023.
doi: 10.3724/SP.J.1206.2012.00003 URL |
|
[35] | 牛春艳, 张永卓, 等. 基于数字PCR的质粒核酸标准物质合作定值研究[J]. 计量学报, 2021, 42(11):1522-1527. |
Niu CY, Zhang YZ, et al. Resrach on the collaborative value assignment of plasmid nucleic acid refernce materials based on digital PCR[J]. Acta Metrol Sin, 2021, 42(11):1522-1527. | |
[36] |
李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5):581-593.
doi: 10.7536/PC190913 |
Li I, Pan JZ, Fang Q. Development and application of digital PCR technology[J]. Prog Chem, 2020, 32(5):581-593. | |
[37] |
Broothaerts W, et al. Development of a certified reference material for genetically modified potato with altered starch composition[J]. J Agric Food Chem, 2007, 55(12):4728-4734.
doi: 10.1021/jf0701584 URL |
[38] | 兰青阔, 李文龙, 孙卓婧, 等. 国内外转基因检测标准体系现状与启示[J]. 农业科技管理, 2020, 39(3):27-32. |
Lan QK, Li WL, Sun ZJ, et al. Status and enlightenment of the standard system for GMO detection in China and abroad[J]. Manag Agric Sci Technol, 2020, 39(3):27-32. |
[1] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[2] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[5] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[6] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[7] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[10] | ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’ [J]. Biotechnology Bulletin, 2023, 39(3): 184-195. |
[11] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[12] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[13] | MA Qiu-yu, YUAN Fang. Research Progress in Salt Gland Secretion and Development in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 74-85. |
[14] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[15] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||