Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 27-34.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0256
Previous Articles Next Articles
JI Jie-yun1(), LI Qiang2, ZENG You-ling1()
Received:
2022-02-28
Online:
2022-12-26
Published:
2022-12-29
Contact:
ZENG You-ling
E-mail:1534631854@qq.com;zeng_ylxju@126.com
JI Jie-yun, LI Qiang, ZENG You-ling. Research Progress in miR169/NFYA Module Responding to Abiotic Stress in Plants[J]. Biotechnology Bulletin, 2022, 38(12): 27-34.
物种 Species | miRNA | miRNA功能 miRNA function | 靶基因 Target gene | 靶基因功能 Target gene function | 调控方式 Control method | 参考文献 Reference |
---|---|---|---|---|---|---|
拟南芥A. thaliana | AtmiR169a | 耐旱性↓ | AtNFYA5 | 耐旱性↑ | 剪切mRNA | [ |
拟南芥A. thaliana | AtmiR169i/l | 耐旱性↑ | AtNFYA5 | 耐旱性↑ | 增加蛋白丰度 | [ |
大豆G. max | GmmiR169c | 耐旱性↓ | GmNFYA3 | 耐旱性↑ | 剪切mRNA | [14,19] |
油菜B. napus | BnmiR169n | 耐旱性↓ | BnNFYA8 | 耐旱性↑ | 剪切mRNA | [ |
番茄S. lycopersicum | SlmiR169c | 耐旱性↑ | SlNFYA1/2/3、SlMRP1 | / | 剪切mRNA | [ |
杨树P. trichocarpa | PtmiR169o | 耐旱性↑ | PtNFYA6 | 耐旱性↓ | 剪切mRNA | [ |
玉米Z. mays | ZmmiR169q | 耐盐性↓ | ZmNFYA8 | 耐盐性↑ | 剪切mRNA | [ |
Table 1 miR169/NFYA module involved in plant salt and drought stress
物种 Species | miRNA | miRNA功能 miRNA function | 靶基因 Target gene | 靶基因功能 Target gene function | 调控方式 Control method | 参考文献 Reference |
---|---|---|---|---|---|---|
拟南芥A. thaliana | AtmiR169a | 耐旱性↓ | AtNFYA5 | 耐旱性↑ | 剪切mRNA | [ |
拟南芥A. thaliana | AtmiR169i/l | 耐旱性↑ | AtNFYA5 | 耐旱性↑ | 增加蛋白丰度 | [ |
大豆G. max | GmmiR169c | 耐旱性↓ | GmNFYA3 | 耐旱性↑ | 剪切mRNA | [14,19] |
油菜B. napus | BnmiR169n | 耐旱性↓ | BnNFYA8 | 耐旱性↑ | 剪切mRNA | [ |
番茄S. lycopersicum | SlmiR169c | 耐旱性↑ | SlNFYA1/2/3、SlMRP1 | / | 剪切mRNA | [ |
杨树P. trichocarpa | PtmiR169o | 耐旱性↑ | PtNFYA6 | 耐旱性↓ | 剪切mRNA | [ |
玉米Z. mays | ZmmiR169q | 耐盐性↓ | ZmNFYA8 | 耐盐性↑ | 剪切mRNA | [ |
物种Species | 基因Gene | 功能Function | 参考文献 Reference |
---|---|---|---|
大豆G. max | GmNFYA5 | ABA依赖途径增强植物耐旱性 | [ |
大豆G. max | GmNFYA13 | ABA依赖途径增强植物耐盐抗旱性 | [ |
杨树P. trichocarpa | PtNFYA9 | 放大ABA合成与信号通路,提高植物幼苗期对盐、旱的敏感性,成苗期对盐、旱的耐受性 | [ |
水稻O. sativa | OsNFYA7 | 非ABA依赖途径增强植物耐旱性 | [ |
柑橘C. sinensis | CsNFYAs | 增强植物苗期耐旱性 | [ |
大豆G. max | GmNFYA | 增强组蛋白的乙酰化来提高植物的耐盐性 | [ |
拟南芥A. thaliana | AtNFYA1 | 增强ABA的信号通路,提高植物幼苗期对盐的敏感性,成苗期对盐的耐受性 | [ |
小麦T. aestivum | TaNFYA10 | 增强植物的盐敏感性、旱耐性 | [ |
棉花G. hirsutum | GhNFYA10/23 | 增强植物的耐盐性 | [ |
谷子S. italica | SiNFYA1 | 增强植物的抗盐耐旱性 | [ |
Table 2 NFYA transcription factors playing a role in salt and drought stress
物种Species | 基因Gene | 功能Function | 参考文献 Reference |
---|---|---|---|
大豆G. max | GmNFYA5 | ABA依赖途径增强植物耐旱性 | [ |
大豆G. max | GmNFYA13 | ABA依赖途径增强植物耐盐抗旱性 | [ |
杨树P. trichocarpa | PtNFYA9 | 放大ABA合成与信号通路,提高植物幼苗期对盐、旱的敏感性,成苗期对盐、旱的耐受性 | [ |
水稻O. sativa | OsNFYA7 | 非ABA依赖途径增强植物耐旱性 | [ |
柑橘C. sinensis | CsNFYAs | 增强植物苗期耐旱性 | [ |
大豆G. max | GmNFYA | 增强组蛋白的乙酰化来提高植物的耐盐性 | [ |
拟南芥A. thaliana | AtNFYA1 | 增强ABA的信号通路,提高植物幼苗期对盐的敏感性,成苗期对盐的耐受性 | [ |
小麦T. aestivum | TaNFYA10 | 增强植物的盐敏感性、旱耐性 | [ |
棉花G. hirsutum | GhNFYA10/23 | 增强植物的耐盐性 | [ |
谷子S. italica | SiNFYA1 | 增强植物的抗盐耐旱性 | [ |
[1] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5):635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[2] |
Zhang HM, Zhu JH, Gong ZZ, et al. Abiotic stress responses in plants[J]. Nat Rev Genet, 2022, 23(2):104-119.
doi: 10.1038/s41576-021-00413-0 URL |
[3] |
Song XW, Li Y, Cao XF, et al. microRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70:489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930 |
[4] |
He J, Xu ML, Willmann MR, et al. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana[J]. PLoS Genet, 2018, 14(4):e1007337.
doi: 10.1371/journal.pgen.1007337 URL |
[5] |
Todesco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(7):e1001031.
doi: 10.1371/journal.pgen.1001031 URL |
[6] | Bastías A, Almada R, Rojas P, et al. Aging gene pathway of microRNAs 156/157 and 172 is altered in juvenile and adult plants from in vitro propagated Prunus sp[J]. Cienc Inv Agr, 2016, 43(3):9. |
[7] |
Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnol J, 2021, 19(2):311-323.
doi: 10.1111/pbi.13464 URL |
[8] |
Wang YT, Feng C, Zhai ZF, et al. The apple microR171i-SCARECROW-LIKE PROTEINS26. 1 module enhances drought stress tolerance by integrating ascorbic acid metabolism[J]. Plant Physiol, 2020, 184(1):194-211.
doi: 10.1104/pp.20.00476 URL |
[9] | 张幸媛, 田宇豪, 秦玉芝, 等. miR169在植物生长发育与非生物胁迫响应中的作用[J]. 植物遗传资源学报, 2021, 22(4):900-909. |
Zhang XY, Tian YH, Qin YZ, et al. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta[J]. J Plant Genet Resour, 2021, 22(4):900-909. | |
[10] | 于月华, 王朝露, 倪志勇. 鹰嘴豆miR169家族的生物信息学分析及靶基因预测[J]. 分子植物育种, 2021, 19(12):3887-3895. |
Yu YH, Wang ZL, Ni ZY. Bioinformatics analysis of chickpea miR169 gene family and prediction of their target genes[J]. Mol Plant Breed, 2021, 19(12):3887-3895. | |
[11] | 方辉, 曲俊杰, 孙嘉曼, 等. 葡萄miR169及其靶基因的生物信息学分析[J]. 南方农业学报, 2017, 48(8):1329-1334. |
Fang H, Qu JJ, Sun JM, et al. Bioinformatics analysis for miR169 and its target gene in Vitis vinifera[J]. J South Agric, 2017, 48(8):1329-1334. | |
[12] |
Bologna NG, Schapire AL, Zhai JX, et al. Multiple RNA recognition patterns during microRNA biogenesis in plants[J]. Genome Res, 2013, 23(10):1675-1689.
doi: 10.1101/gr.153387.112 pmid: 23990609 |
[13] | Wei Q, Wen SY, Lan CY, et al. Genome-wide identification and expression profile analysis of the NF-Y transcription factor gene family in Petunia hybrida[J]. Plants(Basel), 2020, 9(3):336. |
[14] |
Ni ZY, Hu Z, Jiang QY, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1/2):113-129.
doi: 10.1007/s11103-013-0040-5 URL |
[15] |
Laloum T, De Mita S, Gamas P, et al. CCAAT-box binding transcription factors in plants:Y so many?[J]. Trends Plant Sci, 2013, 18(3):157-166.
doi: 10.1016/j.tplants.2012.07.004 pmid: 22939172 |
[16] |
Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(5):571-580.
doi: 10.1016/j.bbagrm.2016.09.006 URL |
[17] |
阮先乐, 王俊生, 刘红占, 等. 油菜miR169基因家族的生物信息学分析及靶基因预测[J]. 浙江农业学报, 2018, 30(8):1273-1280.
doi: 10.3969/j.issn.1004-1524.2018.08.01 |
Ruan XL, Wang JS, Liu HZ, et al. Bioinformatics analysis of miR169 gene family in Brassica napus L. and prediction of their target genes[J]. Acta Agric Zhejiangensis, 2018, 30(8):1273-1280. | |
[18] |
Luan MD, Xu MY, Lu YM, et al. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots[J]. PLoS One, 2014, 9(3):e91369.
doi: 10.1371/journal.pone.0091369 URL |
[19] |
Yu YH, Ni ZY, Wang Y, et al. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana[J]. Plant Sci, 2019, 285:68-78.
doi: S0168-9452(19)30180-3 pmid: 31203895 |
[20] |
Gao J, Ni XP, Li HT, et al. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot(Prunus mume Sieb. et Zucc. )[J]. Plant Mol Biol, 2021, 105(1/2):83-97.
doi: 10.1007/s11103-020-01070-3 URL |
[21] |
Yu C, Chen YT, Cao YQ, et al. Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice[J]. Plant Cell Physiol, 2018, 59(6):1234-1247.
doi: 10.1093/pcp/pcy060 pmid: 29566243 |
[22] |
Du QG, Zhao M, Gao W, et al. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis[J]. Plant J, 2017, 91(1):22-33.
doi: 10.1111/tpj.13540 URL |
[23] |
Li WX, Oono Y, Zhu JH, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
doi: 10.1105/tpc.108.059444 URL |
[24] |
Luan MD, Xu MY, Lu YM, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 555(2):178-185.
doi: 10.1016/j.gene.2014.11.001 pmid: 25445264 |
[25] |
Pereira SLS, Martins CPS, Sousa AO, et al. Genome-wide characterization and expression analysis of Citrus NUCLEAR FACTOR-Y(NF-Y)transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance[J]. PLoS One, 2018, 13(6):e0199187.
doi: 10.1371/journal.pone.0199187 URL |
[26] |
Zhang Q, Zhang JJ, Wei HL, et al. Genome-wide identification of NF-YA gene family in cotton and the positive role of GhNF-YA10 and GhNF-YA23 in salt tolerance[J]. Int J Biol Macromol, 2020, 165(Pt B):2103-2115.
doi: 10.1016/j.ijbiomac.2020.10.064 pmid: 33080263 |
[27] |
Ma XY, Li CL, Wang M. Wheat NF-YA10 functions independently in salinity and drought stress[J]. Bioengineered, 2015, 6(4):245-247.
doi: 10.1080/21655979.2015.1054085 pmid: 26083807 |
[28] |
Zhao M, Ding H, Zhu JK, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis[J]. New Phytol, 2011, 190(4):906-915.
doi: 10.1111/j.1469-8137.2011.03647.x pmid: 21348874 |
[29] |
Serivichyaswat PT, Susila H, Ahn JH. Elongated hypocotyl 5-homolog(HYH)negatively regulates expression of the ambient temperature-responsive microRNA gene MIR169[J]. Front Plant Sci, 2017, 8:2087.
doi: 10.3389/fpls.2017.02087 pmid: 29270188 |
[30] | 吴耀荣, 谢旗. ABA与植物胁迫抗性[J]. 植物学通报, 2006, 41(5):511-518. |
Wu YR, Xie Q. ABA and plant stress response[J]. Chin Bull Bot, 2006, 41(5):511-518. | |
[31] |
Xiong LM, Zhu JK. Regulation of abscisic acid biosynthesis[J]. Plant Physiol, 2003, 133(1):29-36.
pmid: 12970472 |
[32] |
Hsu PK, Dubeaux G, Takahashi Y, et al. Signaling mechanisms in abscisic acid-mediated stomatal closure[J]. Plant J, 2021, 105(2):307-321.
doi: 10.1111/tpj.15067 URL |
[33] | 郑钏, 杨颖增, 罗晓峰, 等. 植物激素ABA调控植物根系生长的研究进展[J]. 植物科学学报, 2019, 37(5):690-698. |
Zheng C, Yang YZ, Luo XF, et al. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Sci J, 2019, 37(5):690-698. | |
[34] |
Bedi S, Sengupta S, Ray A, et al. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes[J]. Plant Sci, 2016, 250:125-140.
doi: 10.1016/j.plantsci.2016.06.006 URL |
[35] |
Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5(ABA-insensitive 5)in plant development, abiotic stress responses and phytohormone crosstalk[J]. Front Plant Sci, 2016, 7:1884.
doi: 10.3389/fpls.2016.01884 pmid: 28018412 |
[36] |
Li J, Duan YJ, Sun NL, et al. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L.[J]. Plant Sci, 2021, 313:111062.
doi: 10.1016/j.plantsci.2021.111062 URL |
[37] |
Zhang XH, Zou Z, Gong PJ, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J]. Biotechnol Lett, 2011, 33(2):403-409.
doi: 10.1007/s10529-010-0436-0 pmid: 20960221 |
[38] |
Jiao ZY, Lian CL, Han S, et al. PtmiR169o plays a positive role in regulating drought tolerance and growth by targeting the PtNF-YA6 gene in poplar[J]. Environ Exp Bot, 2021, 189:104549.
doi: 10.1016/j.envexpbot.2021.104549 URL |
[39] |
Lian CL, Li Q, Yao K, et al. Populus trichocarpa PtNF-YA9, A multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in Arabidopsis[J]. Front Plant Sci, 2018, 9:954.
doi: 10.3389/fpls.2018.00954 pmid: 30050546 |
[40] |
Ma XJ, Yu TF, Li XH, et al. Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants[J]. BMC Plant Biol, 2020, 20(1):123.
doi: 10.1186/s12870-020-02337-z URL |
[41] |
Ma XJ, Fu JD, Tang YM, et al. GmNFYA13 improves salt and drought tolerance in transgenic soybean plants[J]. Front Plant Sci, 2020, 11:587244.
doi: 10.3389/fpls.2020.587244 URL |
[42] |
Quach TN, Nguyen HTM, Valliyodan B, et al. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response[J]. Mol Genet Genomics, 2015, 290(3):1095-1115.
doi: 10.1007/s00438-014-0978-2 pmid: 25542200 |
[43] |
Yu TF, Liu Y, Fu JD, et al. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance[J]. Plant Biotechnol J, 2021, 19(12):2589-2605.
doi: 10.1111/pbi.13684 URL |
[44] |
Zhou YY, Zhang Y, Wang XW, et al. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus[J]. New Phytol, 2020, 227(2):407-426.
doi: 10.1111/nph.16524 pmid: 32145071 |
[45] |
Bi C, Ma Y, Wang XF, et al. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis[J]. Plant Mol Biol, 2017, 95(4/5):425-439.
doi: 10.1007/s11103-017-0661-1 URL |
[46] |
Yotsui I, Saruhashi M, Kawato T, et al. ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens[J]. New Phytol, 2013, 199(1):101-109.
doi: 10.1111/nph.12251 pmid: 23550615 |
[47] |
Lee DK, Kim HI, Jang G, et al. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner[J]. Plant Sci, 2015, 241:199-210.
doi: 10.1016/j.plantsci.2015.10.006 URL |
[48] |
Xing LJ, Zhu M, Luan MD, et al. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS[J]. Plant Physiol, 2022, 188(1):608-623.
doi: 10.1093/plphys/kiab498 URL |
[49] |
Lu L, Wei W, Tao JJ, et al. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean[J]. Plant Biotechnol J, 2021, 19(11):2362-2379.
doi: 10.1111/pbi.13668 pmid: 34265872 |
[50] |
Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid:emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61:651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[51] |
Li YJ, Fang Y, Fu YR, et al. NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis[J]. PLoS One, 2013, 8(4):e61289.
doi: 10.1371/journal.pone.0061289 URL |
[52] | Feng ZJ, He GH, Zheng WJ, et al. Foxtail millet NF-Y families:genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses[J]. Front Plant Sci, 2015, 6:1142. |
[53] |
Piya S, Liu JY, Burch-Smith T, et al. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism[J]. J Exp Bot, 2019, 71(4):1402-1417.
doi: 10.1093/jxb/erz502 URL |
[54] |
Yin FL, Zeng YL, Ji JY, et al. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis[J]. Front Plant Sci, 2021, 12:638788.
doi: 10.3389/fpls.2021.638788 URL |
[55] |
Sakuraba Y, Bülbül S, Piao WL, et al. Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways[J]. Plant J, 2017, 92(6):1106-1120.
doi: 10.1111/tpj.13747 URL |
[56] |
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, et al. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members[J]. PLoS One, 2012, 7(10):e48138.
doi: 10.1371/journal.pone.0048138 URL |
[57] |
Mu JY, Tan HL, Hong SL, et al. Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development[J]. Mol Plant, 2013, 6(1):188-201.
doi: 10.1093/mp/sss061 pmid: 22933713 |
[58] |
Xu MY, Zhang L, Li WW, et al. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana[J]. J Exp Bot, 2013, 65(1):89-101.
doi: 10.1093/jxb/ert353 URL |
[59] |
Zhao H, Lin K, Ma L, et al. Arabidopsis NUCLEAR FACTOR Y A8 inhibits the juvenile-to-adult transition by activating transcription of MIR156s[J]. J Exp Bot, 2020, 71(16):4890-4902.
doi: 10.1093/jxb/eraa197 pmid: 32445333 |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[10] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[11] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[12] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[13] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[14] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[15] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||