Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 143-150.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1449
Previous Articles Next Articles
LI Wen-chen1(), LIU Xin1, KANG Yue1, LI Wei2, QI Ze-zheng1, YU Lu1, WANG Fang1()
Received:
2022-11-24
Online:
2023-07-26
Published:
2023-08-17
Contact:
WANG Fang
E-mail:liwenchen2021@163.com;wangfangnd@hotmail.com
LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean[J]. Biotechnology Bulletin, 2023, 39(7): 143-150.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物长度Primer length/bp |
---|---|---|
GmATL3-1-F | taaggttaccGAATTCTGGATCCCGCGGTG | 374 |
GmATL3-1-R | atgcccgggcCTCGAGAGGATGAGGATGAACCTTCC | |
GmATL3-2-F | taaggttaccGAATTCGGTGACTCTTCCGCG | 296 |
GmATL3-2-R | atgcccgggcCTCGAGTACCAACACCGGTAGGGAG | |
GmPDS-F | taaggttaccGAATTCTCTCCGCGTCCTCTAAAAC | 332 |
GmPDS-R | atgcccgggcCTCGAGTCCAGGCTTATTTGGCATAGC | |
qATL3-F | TGCCTTCATCTCTTCGCCAG | 196 |
qATL3-R | CCGCACATTCCAAACCATCC | |
qPDS-F | CCGCTGCAAGCTTGGCTTTA | 218 |
qPDS-R | CGACACGCAAGGGAGAGAAA | |
EF4-F | TGCCGCCAAGAAGAAGTGAT | 149 |
EF4-R | GCGGACACTTCAAAATATAACTGGT |
Table 1 Primer sequence
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物长度Primer length/bp |
---|---|---|
GmATL3-1-F | taaggttaccGAATTCTGGATCCCGCGGTG | 374 |
GmATL3-1-R | atgcccgggcCTCGAGAGGATGAGGATGAACCTTCC | |
GmATL3-2-F | taaggttaccGAATTCGGTGACTCTTCCGCG | 296 |
GmATL3-2-R | atgcccgggcCTCGAGTACCAACACCGGTAGGGAG | |
GmPDS-F | taaggttaccGAATTCTCTCCGCGTCCTCTAAAAC | 332 |
GmPDS-R | atgcccgggcCTCGAGTCCAGGCTTATTTGGCATAGC | |
qATL3-F | TGCCTTCATCTCTTCGCCAG | 196 |
qATL3-R | CCGCACATTCCAAACCATCC | |
qPDS-F | CCGCTGCAAGCTTGGCTTTA | 218 |
qPDS-R | CGACACGCAAGGGAGAGAAA | |
EF4-F | TGCCGCCAAGAAGAAGTGAT | 149 |
EF4-R | GCGGACACTTCAAAATATAACTGGT |
Fig. 1 GmATL3 and GmPDS gene sequences and silent fragment regions Blue indicates the full length of the gene sequences, 1 347 bp for GmATL3 gene and 2 196 bp for GmPDS gene; purple indicates the full length of the CDS coding region, 783 bp for GmATL3 coding region and 1 710 bp for GmPDS CDS coding region; red represents the conserved structural region, 402 bp for GmATL3 and 1 665 bp for GmPDS, respectively; black represents silent fragment regions, 492-833 bp for GmATL3-1, 265-528 bp for GmATL3-2 and 695-880 bp for GmPDS
Fig. 4 Relative expressions of GmATL3-1, GmATL3-2 and GmPDS in the roots and leaves by three inoculation methods A: Injection inoculation; B: root inoculation; C: injection plus root inoculation; D: 1: leaf control; 2: leaf test group; 3: root control; 4: root test group; M: DL2000 marker.** indicates P ≤ 0.01,*** indicates P ≤ 0.001 and ns indicates no signifraunt differenle
[1] |
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999, 286(5441): 950-952.
doi: 10.1126/science.286.5441.950 pmid: 10542148 |
[2] |
Ratcliff F, Martin-Hernandez AM, Baulcombe DC, et al. Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing[J]. The Plant Journal, 2001, 25(2): 237-245.
doi: 10.1046/j.0960-7412.2000.00942.x URL |
[3] | 王淑敏, 高雪彦, 刘东升, 等. 致病基因“猎手”: RNA干扰技术在分子生物学中的教学设计[J]. 生命的化学, 2022, 42(8): 1609-1616. |
Wang SM, Gao XY, Liu DS, et al. Pathogenic gene “hunters” - teaching design of RNA interference technology in molecular biology[J]. Chemistry of life, 2022, 42(8): 1609-1616. | |
[4] |
Becker A, Lange M. VIGS--genomics goes functional[J]. Trends in Plant Science, 2010, 15(1): 1-4.
doi: 10.1016/j.tplants.2009.09.002 pmid: 19819180 |
[5] |
Shi GY, Hao MY, Tian BM, et al. A methodological advance of tobacco rattle virus-induced gene silencing for functional genomics in plants[J]. Frontiers in Plant Science, 2021, 12: 671091.
doi: 10.3389/fpls.2021.671091 URL |
[6] |
Constantin GD, Krath BN, MacFarlane SA, et al. Virus-induced gene silencing as a tool for functional genomics in a legume species[J]. The Plant Journal. 2004, 40(4): 622-631.
doi: 10.1111/tpj.2004.40.issue-4 URL |
[7] |
Kim KH, Lim S, Kang YJ, et al. Optimization of a virus-induced gene silencing system with Soybean yellow common mosaic virus for gene function studies in soybeans[J]. The Plant Pathology Journal, 2016, 32(2): 112-122.
doi: 10.5423/PPJ.OA.04.2015.0063 URL |
[8] |
Díaz-Camino C, Annamalai P, Sanchez F, et al. An effective virus-based gene silencing method for functional genomics studies in common bean[J]. Plant Methods, 2011, 7: 16.
doi: 10.1186/1746-4811-7-16 pmid: 21668993 |
[9] |
Yamagishi N, Yoshikawa N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors[J]. Plant Molecular Biology, 2009, 71(1): 15-24.
doi: 10.1007/s11103-009-9505-y URL |
[10] |
Nagamatsu A, Masuta C, Senda M, et al. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing[J]. Plant Biotechnology Journal, 2007, 5(6): 778-790.
doi: 10.1111/j.1467-7652.2007.00288.x pmid: 17764520 |
[11] | Singh AK, Ghosh D, Chakraborty S. Optimization of tobacco rattle virus(TRV)-based virus-induced gene silencing(VIGS)in tomato[J]. Methods in Molecular Biology(Clifton, N J), 2022, 2408: 133-145. |
[12] | Baulcombe DC. Viruses and gene silencing in plants[J]. Archives of virology supplementum, 1999, 15: 189-201. |
[13] |
Valentine T, Shaw J, Blok VC, et al. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector[J]. Plant Physiology, 2004, 136(4): 3999-4009.
doi: 10.1104/pp.104.051466 pmid: 15591447 |
[14] |
Wang YF, Huang N, Ye N, et al. An efficient virus-induced gene silencing system for functional genomics research in walnut(Jug-lans regia L.) fruits[J]. Frontiers in Plant Science, 2021, 12: 661633.
doi: 10.3389/fpls.2021.661633 URL |
[15] | Cai CP, Wang XY, Zhang BH, et al. Tobacco rattle virus-induced gene silencing in cotton[M]// Methods in Molecular Biology. New York: Springer New York Press, 2018: 105-119. |
[16] |
Garg A, Sharma S, Srivastava P, et al. Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant[J]. Protoplasma, 2021, 258(5): 1155-1162.
doi: 10.1007/s00709-021-01631-3 |
[17] |
Zhou J, Hunter DA, Lewis DH, et al. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy[J]. Plant Cell Reports, 2018, 37(9): 1311-1323.
doi: 10.1007/s00299-018-2314-5 pmid: 29922849 |
[18] |
Liao JJ, Xie L, Shi HW, et al. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases[J]. Phytochemistry, 2021, 189: 112824.
doi: 10.1016/j.phytochem.2021.112824 URL |
[19] | Zhang J, Yu DS, Zhang Y, et al. Vacuum and Co-cultivation agroinfiltration of(germinated)seeds results in tobacco rattle virus(TRV)mediated whole-plant virus-induced gene silencing(VIGS)in wheat and maize[J]. Frontiers in Plant Science, 2017, 8: 389-393. |
[20] |
刘晓彬, 刘娜, 李福宽, 等. TRV介导的大豆基因瞬时沉默体系的建立[J]. 中国农业科学, 2015, 48(12): 2479-2486.
doi: 10.3864/j.issn.0578-1752.2015.12.021 |
Liu XB, Liu N, Li FK, et al. Establishment of a TRV-mediated transient gene-silencing system in soybean[J]. Scientia Agricultura Sinica, 2015, 48(12): 2479-2486. | |
[21] |
Tavares-Esashika ML, Campos RNS, Blawid R, et al. Characterization of an infectious clone of pepper ringspot virus and its use as a viral vector[J]. Archives of Virology, 2020, 165(2): 367-375.
doi: 10.1007/s00705-019-04505-5 pmid: 31845151 |
[22] | Cheng CX, Gao JP, Ma N. Investigation of petal senescence by TRV-mediated virus-induced gene silencing in rose[J]. Methods in Molecular Biology(Clifton, N J), 2018, 1744: 49-63. |
[23] | Meng LH, Wang RH, Zhu BZ, et al. Efficient virus-induced gene silencing in Solanum rostratum[J]. PLoS One, 2016, 11(6): e0156228. |
[24] |
Zhang JX, Wang FR, Zhang CY, et al. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response[J]. Plant Cell Reports, 2018, 37(8): 1091-1100.
doi: 10.1007/s00299-018-2294-5 |
[25] | 王芳. 小粒黑豆抗胞囊线虫SSH-cDNA文库构建及重要基因表达分析[D]. 沈阳: 沈阳农业大学, 2012. |
Wang F. Xiaolidou SSH-cDNA library construction and expression analysis of important genes under Heterodera glycines infection[D]. Shenyang: Shenyang Agricultural University, 2012. | |
[26] | 孙天杰, 麻楠, 孙立永, 等. 一种基于TRV-VIGS的高通量大豆基因功能验证方法[J]. 农业生物技术学报, 2020, 28(11): 2080-2090. |
Sun TJ, Ma N, Sun LY, et al. A TRV-VIGS-based approach for high throughput gene function veri-fication in soybean(Glycine max)[J]. Journal of Agricultural Biotechnology, 2020, 28(11): 2080-2090. | |
[27] | Ma SH, Niu HW, Liu CJ, et al. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean[J]. PLos One, 2013, 8(10): e75271. |
[28] |
Ryu CM, Anand A, Kang L, et al. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species[J]. The Plant Journal, 2004, 40(2): 322-331.
doi: 10.1111/tpj.2004.40.issue-2 URL |
[29] |
Senthil-Kumar M, Mysore KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato[J]. Plant Biotechnology Journal, 2011, 9(7): 797-806.
doi: 10.1111/j.1467-7652.2011.00589.x pmid: 21265998 |
[30] |
Schachtsiek J, Hussain T, Azzouhri K, et al. Virus-induced gene silencing(VIGS)in Cannabis sativa L.[J]. Plant Methods, 2019, 15: 157.
doi: 10.1186/s13007-019-0542-5 pmid: 31889981 |
[31] | Velásquez AC, Chakravarthy S, Martin GB. Virus-induced gene silencing(VIGS)in Nicotiana benthamiana and tomato[J]. Jove-Journal of Visualized Experiments: JoVE, 2009(28): 1292. |
[32] |
Chen JC, Jiang CZ, Gookin T, et al. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence[J]. Plant Molecular Biology, 2004, 55(4): 521-530.
doi: 10.1007/s11103-004-0590-7 URL |
[33] |
Zhou BJ, Zeng LR. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach[J]. Plant Methods, 2017, 13: 59.
doi: 10.1186/s13007-017-0210-6 |
[34] | 张景霞, 王芙蓉, 高阳, 等. VIGS技术及其在棉花功能基因组研究中的应用进展[J]. 棉花学报, 2015, 27(5): 469-473. |
Zhang JX, Wang FR, Gao Y. Application of VIGS in studies of gene function in cotton[J]. Cotton Science, 2015, 27(5): 469-473. |
[1] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[2] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage [J]. Biotechnology Bulletin, 2023, 39(2): 70-79. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[9] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[10] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[11] | SHI Guang-cheng, YANG Wan-ming, DU Wei-jun, WANG Min. Screening of Salt-tolerant Soybean Germplasm and Physiological Characteristics Analysis of Its Salt Tolerance [J]. Biotechnology Bulletin, 2022, 38(4): 174-183. |
[12] | FU Si-tong, SI Wei-jia, LIU Ying, CHENG Tang-ren, WANG Jia, ZHANG Qi-xiang, PAN Hui-tang. Establishing Tobacco Rattle Virus-mediated Gene Silencing System for Primula forbesii [J]. Biotechnology Bulletin, 2022, 38(4): 295-302. |
[13] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[14] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
[15] | WANG Hui, ZHANG Shun-bin, JIN He, WANG Han, ZHANG Geng-hua, XIA Shi-ning, CHEN Jing-sheng, DUAN Yu-xi. Potential Function of 4-coumaric Acid-CoA Ligase in Response to Soybean Cyst Nematode Stress [J]. Biotechnology Bulletin, 2021, 37(7): 71-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||