Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (7): 71-80.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0378
Previous Articles Next Articles
WANG Hui1(), ZHANG Shun-bin1, JIN He1, WANG Han1, ZHANG Geng-hua1, XIA Shi-ning1, CHEN Jing-sheng2, DUAN Yu-xi3()
Received:
2021-03-26
Online:
2021-07-26
Published:
2021-08-13
Contact:
DUAN Yu-xi
E-mail:wanghuisyau@sina.com;duanyx6407@163.com
WANG Hui, ZHANG Shun-bin, JIN He, WANG Han, ZHANG Geng-hua, XIA Shi-ning, CHEN Jing-sheng, DUAN Yu-xi. Potential Function of 4-coumaric Acid-CoA Ligase in Response to Soybean Cyst Nematode Stress[J]. Biotechnology Bulletin, 2021, 37(7): 71-80.
[1] |
Niblack TL.Soybean cyst nematode management reconsidered[J].Plant Dis,2005,89(10):1020-1026.
doi: 10.1094/PD-89-1020 pmid: 30791267 |
[2] | 吴海燕.大豆与大豆胞囊线虫相互关系研究[D].沈阳:沈阳农业大学,2003. |
Wu HY.The interaction of resistant soybeans and Heterodera glycines[D].Shenyang:Shenyang Agricultural University,2003. | |
[3] | 华萃.大豆孢囊线虫致病性变异及趋化性研究[D].长春:中国科学院大学,2018. |
Hua C.Virulence variation and chemotaxis of soybean cyst nematode Heterodera glycines[D].Changchun:University of Chinese Academy of Sciences,2018. | |
[4] | 刘大伟.灰皮支黑豆对大豆胞囊线虫3号生理小种抗性机制研究[D].沈阳:沈阳农业大学,2011. |
Liu DW.The resistant mechanisms of huipizhi black soybean to race 3 of Heterodera glycines[D].Shenyang:Shenyang Agricultural University,2011. | |
[5] | 王安娜,王婵婵,吴蕾,等.大豆C4H基因克隆及生物信息学分析[J].东北农业大学学报,2010,41(4):12-16, 161. |
Wang AN,Wang CC,Wu L,et al.Soybean C4H gene clone and bioinformatics analysis[J].J Northeast Agric Univ,2010,41(4):12-16, 161. | |
[6] |
Bohlmann H,Sobczak M.The plant cell wall in the feeding sites of cyst Nematodes[J].Front Plant Sci,2014,5:89.
doi: 10.3389/fpls.2014.00089 pmid: 24678316 |
[7] |
Bellincampi D,Cervone F,Lionetti V.Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J].Front Plant Sci,2014,5:228.
doi: 10.3389/fpls.2014.00228 pmid: 24904623 |
[8] | 王平,周青平,王沛.植物内皮层的分化及其屏障功能研究进展[J].西北植物学报,2019,39(4):752-762. |
Wang P,Zhou QP,Wang P.Research progress on differentiation and barrier function of endodermis of plant[J].Acta Bot Boreali Occidentalia Sin,2019,39(4):752-762. | |
[9] | 赵晶.陆地棉GhLAC家族鉴定及候选基因抗黄萎病功能研究[D].河北:河北农业大学,2019. |
Zhao J.Identification of GhLAC gene family and functionial analysis of candidate GhLAC genes from Gossypium hirsutum in Verticillium wilt resistance[D].Hebei:Hebei Agricultural University,2019. | |
[10] | 王则祥,李航,谢文銮,等.木质素基本结构、热解机理及特性研究进展[J].新能源进展,2020,8(1):6-14. |
Wang ZX,Li H,Xie WL,et al.Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J].Adv New Renew Energy,2020,8(1):6-14. | |
[11] |
Mitchum MG.Soybean resistance to the soybean cyst nematode Heterodera glycines:an update[J].Phytopathology®,2016,106(12):1444-1450.
doi: 10.1094/PHYTO-06-16-0227-RVW URL |
[12] |
Jones JT,Haegeman A,Danchin EG,et al.Top 10 plant-parasitic Nematodes in molecular plant pathology[J].Mol Plant Pathol,2013,14(9):946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[13] | 石红利.大豆孢囊线虫的生物学特性及诱导抗性研究[D].杭州:浙江大学,2013. |
Shi HL.Biological characteristics and induced resistance to Heterodera glycines[D].Hangzhou:Zhejiang University,2013. | |
[14] |
Williamson VM,Gleason CA.Plant-nematode interactions[J].Curr Opin Plant Biol,2003,6(4):327-333.
pmid: 12873526 |
[15] | Lauritis J A,Rebois R V,Graney L S.Development of Heterodera glycines ichinohe on soybean, Glycine max(L.)Merr., under gnotobiotic conditions[J].Journal of Nematology,1983.15(2). |
[16] | 刘威.薄皮甜瓜肉桂醇脱氢酶(CAD)在非生物胁迫下参与木质素合成的功能探究[D].沈阳:沈阳农业大学,2019. |
Liu W.Functional research of CmCADs in lignin biosynthesis in oriental melon(Cucumis melo L. )under abiotic stresses[D].Shenyang:Shenyang Agricultural University,2019. | |
[17] |
Dai K.Concentrations of lignin and wall-bound ferulic acid after wounding in the phloem of Chamaecyparis obtusa[J].Trees,2005,19(4):451-456.
doi: 10.1007/s00468-004-0404-1 URL |
[18] |
Perry RN.Chemoreception in plant parasitic Nematodes[J].Annu Rev Phytopathol,1996,34:181-199.
pmid: 15012540 |
[19] |
Xiang N,Lawrence KS,Kloepper JW,et al.Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria(PGPR)on soybean[J].PLoS One,2017,12(7):e0181201.
doi: 10.1371/journal.pone.0181201 URL |
[20] |
Mwaheb MAMA,Hussain M,Tian JQ,et al.Synergetic suppression of soybean cyst Nematodes by chitosan and Hirsutella minnesotensis via the assembly of the soybean rhizosphere microbial communities[J].Biol Control,2017,115:85-94.
doi: 10.1016/j.biocontrol.2017.09.011 URL |
[21] |
Ravelombola WS,Qin J,Shi A,et al.Genome-wide association study and genomic selection for tolerance of soybean biomass to soybean cyst nematode infestation[J].PLoS One,2020,15(7):e0235089.
doi: 10.1371/journal.pone.0235089 URL |
[22] |
Yan GP,Baidoo R.Current research status of Heterodera glycines resistance and its implication on soybean breeding[J].Engineering,2018,4(4):534-541.
doi: 10.1016/j.eng.2018.07.009 URL |
[23] |
Concibido VC,Diers BW,Arelli PR.A decade of QTL mapping for cyst nematode resistance in soybean[J].Crop Sci,2004,44(4):1121-1131.
doi: 10.2135/cropsci2004.1121 URL |
[24] |
Brucker E,Carlson S,Wright E,et al.Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse[J].Theor Appl Genet,2005,111(1):44-49.
pmid: 15883792 |
[25] |
Guo W,Zhang F,Bao AL,et al.The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode[J].Mol Plant Pathol,2019,20(2):270-286.
doi: 10.1111/mpp.2019.20.issue-2 URL |
[26] |
Lin J,Mazarei M,Zhao N,et al.Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines[J].Plant Biotechnol J,2016,14(11):2100-2109.
doi: 10.1111/pbi.2016.14.issue-11 URL |
[27] |
Wan J,Vuong T,Jiao Y,et al.Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(Heterodera glycines Ichinohe)[J].BMC Genomics,2015,16:148.
doi: 10.1186/s12864-015-1316-8 URL |
[28] | 李爽.灰皮支黑豆抗大豆胞囊线虫转录组及蛋白质网络研究[D].沈阳:沈阳农业大学,2018. |
Li S.Study on transcriptome and protein interaction network of huipizhi Heidou resistance to soybean cyst nematode[D].Shenyang:Shenyang Agricultural University,2018. | |
[29] | 焦梦瑶,董铮,刘世名,等.大豆对大豆胞囊线虫侵染的应答机制研究[J].大豆科学,2017,36(3):475-479. |
Jiao MY,Dong Z,Liu SM,et al.The response mechanism of soybean to soybean cyst nematode(Heterodera glycines)[J].Soybean Sci,2017,36(3):475-479. | |
[30] | 梁艳丽,赵婧,刘林,等.植物细胞壁在植物与病原菌互作中的作用[J].分子植物育种,2016,14(5):1255-1261. |
Liang YL,Zhao J,Liu L,et al.The role of the plant cell wall in plant pathogen interactions[J].Mol Plant Breed,2016,14(5):1255-1261. | |
[31] |
Ali MA,Azeem F,Li H,et al.Smart parasitic Nematodes use multifaceted strategies to parasitize plants[J].Front Plant Sci,2017,8:1699.
doi: 10.3389/fpls.2017.01699 URL |
[32] |
Keegstra K.Plant cell walls:figure 1[J].Plant Physiol,2010,154(2):483-486.
doi: 10.1104/pp.110.161240 pmid: 20921169 |
[33] | 杨冲.调控番茄木质素合成的机理研究[D].武汉:华中农业大学,2019. |
Yang C.Study on the mechanism of S1MYB4 regulating tomato lignin synthesis[D].Wuhan:Huazhong Agricultural University,2019. | |
[34] | 李英.外源纤维素酶和4-香豆酸辅酶A连接酶影响木质纤维素结构与酶解分子机理的研究[D].武汉:华中农业大学,2018. |
Li Y.Characterization of transgenic rice plants over-produced fungi cellulases and suppressed native Os4CL4 for improving lignocellulose features and enhancing biomass enzymatic saccharification[D].Wuhan:Huazhong Agricultural University,2018. | |
[35] | 田晓明,颜立红,向光锋,等.植物4香豆酸:辅酶A连接酶研究进展[J].生物技术通报,2017,33(4):19-26. |
Tian XM,Yan LH,Xiang GF,et al.Research progress on 4-coumarate:coenzyme A ligase(4CL)in plants[J].Biotechnol Bull,2017,33(4):19-26. | |
[36] |
Liu QQ,Luo L,Zheng LQ.Lignins:biosynjournal and biological functions in plants[J].Int J Mol Sci,2018,19(2):335.
doi: 10.3390/ijms19020335 URL |
[37] |
Barros J,Serk H,Granlund I,et al.The cell biology of lignification in higher plants[J].Ann Bot,2015,115(7):1053-1074.
doi: 10.1093/aob/mcv046 URL |
[38] |
Vogt T.Phenylpropanoid biosynjournal[J].Mol Plant,2010,3(1):2-20.
doi: 10.1093/mp/ssp106 URL |
[39] | 孙海燕.正向选择驱动被子植物4-香豆酸辅酶A连接酶基因的功能分化[D].武汉:华中农业大学,2013. |
Sun HY.Positive selection drives adaptive diversification of the 4-coumarate:CoA ligase(4CL)gene in angiosperms[D].Wuhan:Huazhong Agricultural University,2013. | |
[40] |
Yadav V,Wang ZY,Wei CH,et al.Phenylpropanoid pathway engineering:an emerging approach towards plant defense[J].Pathogens,2020,9(4):312.
doi: 10.3390/pathogens9040312 URL |
[41] | 冯鹤翔,涂轶.木质素生物合成的研究[J].青岛大学学报:自然科学版,2018,31(1):46-54. |
Feng HX,Tu Y.Research on lignin biosynjournal[J].J Qingdao Univ:Nat Sci Ed,2018,31(1):46-54. | |
[42] | Ithal N,Recknor J,Nettleton D,et al.Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean[J].Mol Plant Microbe Interactions®,2007,20(3):293-305. |
[43] |
Khanam S,Bauters L,Singh RR,et al.Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode Ditylenchus angustus[J].Mol Plant Pathol,2018,19(6):1391-1402.
doi: 10.1111/mpp.12622 URL |
[44] |
Veronico P,Paciolla C,Pomar F,et al.Changes in lignin biosynjournal and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato[J].J Plant Physiol,2018,230:40-50.
doi: 10.1016/j.jplph.2018.07.013 URL |
[45] | 颜清上,王连铮,陈品三.中国小黑豆抗源对大豆孢囊线虫4号生理小种抗病的生化反应[J].作物学报,1997,23(5):529-537. |
Yan QS,Wang LZ,Chen PS.Biochemical responses of resistance to race 4 of Heterodera glycines in Chinese black soybean[J].Acta Agron Sin,1997,23(5):529-537. | |
[46] | 林晓敏,李斌,谭晓荣,等.大豆胞囊线虫抗性机制的研究进展[J].作物杂志,2015(5):11-17. |
Lin XM,Li B,Tan XR,et al.Research progress on resistance mechanism to soybean cyst nematode in soybean[J].Crops,2015(5):11-17. | |
[47] | 张士花,2011.不同4CL基因家族成员对植物苯丙烷衍生物代谢调控的研究[D].山东:山东师范大学. |
Zhang S H.Study on Metabolic Regulation of Plant Phenylpropane Derivatives by Members of Different 4CL Gene Family[D].Shan Dong:Shandong Normal University,2011. | |
[48] | 陈建业.葡萄酒中酚酸及葡萄果实苯丙烷类代谢途径研究[D].北京:中国农业大学,2005. |
Chen JY.Study on the phenolic acids in wines and phenylpropanoid metabolism in grape berries[D].Beijing:China Agricultural University,2005. | |
[49] |
Lois R,Hahlbrock K.Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate:CoA ligase gene families in various organs of parsley plants[J].Zeitschrift Für Naturforschung C,1992,47(1/2):90-94.
doi: 10.1515/znc-1992-1-216 URL |
[50] | 崔建东,李艳,牟德华.苯丙氨酸解氨酶(PAL)的研究进展[J].食品工业科技,2008,29(7):306-308. |
Cui JD,Li Y,Mou DH.Research progress of phenylalanine ammonia lyase[J].Sci Technol Food Ind,2008,29(7):306-308. | |
[51] | 王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500-508. |
Wang L,Shi LL,Zhang YX,et al.Biosynjournal and regulation of the secondary metabolites in plants[J].J Wuhan Bot Res,2007,25(5):500-508. | |
[52] | 梁惠桢,朱家红,戴好富,等.海南龙血树肉桂酸-4-羟基化酶基因(DcC4H)的克隆及表达分析[J].分子植物育种,2018,16(24):7984-7989. |
Liang HZ,Zhu JH,Dai HF,et al.Cloning and expression analysis of cinnamate 4-hydroxylase gene DcC4H in Dracaena cambodiana[J].Mol Plant Breed,2018,16(24):7984-7989. | |
[53] |
Russell DW,Conn EE.The cinnamic acid 4-hydraxylase of pea seedlings[J].Arch Biochem Biophys,1967,122(1):256-258.
pmid: 4383827 |
[54] |
Xia JX,Liu YJ,Yao SB,et al.Characterization and expression profiling of Camellia sinensis cinnamate 4-hydroxylase genes in phenylpropanoid pathways[J].Genes,2017,8(8):193.
doi: 10.3390/genes8080193 URL |
[55] | 郭亚玉,许会敏,赵媛媛,等.植物木质化过程及其调控的研究进展[J].中国科学:生命科学,2020,50(2):111-122. |
Guo YY,Xu HM,Zhao YY,et al.Plant lignification and its regulation[J].Sci Sin:Vitae,2020,50(2):111-122.
doi: 10.1360/SSV-2019-0204 URL |
|
[56] |
Watanabe B,Kirikae H,Koeduka T,et al.Synjournal and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors[J].Bioorg Med Chem,2018,26(9):2466-2474.
doi: 10.1016/j.bmc.2018.04.006 URL |
[57] |
Gulick AM.Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase[J].ACS Chem Biol,2009,4(10):811-827.
doi: 10.1021/cb900156h URL |
[58] | 于利.烤烟苯丙烷代谢关键酶基因分离及表达模式分析[D].北京:中国农业科学院,2014. |
Yu L.Isolation and expression analysis of gene encoding the key enzymes in phenylpropanoid metabolic pathway in the flue-cured tobacco[D].Beijing:Chinese Academy of Agricultural Sciences,2014. | |
[59] | 母洪娜,孙陶泽,徐晨,等.桂花(Osmanthus fragrans Lour. )4-香豆酸辅酶A连接酶(4CL)基因克隆与表达分析[J].分子植物育种,2016,14(3):536-541. |
Mu HN,Sun TZ,Xu C,et al.Gene clone and expression analysis of 4-coumarate-co A ligase in sweet Osmanthus(Osmanthus fragrans lour. )[J].Mol Plant Breed,2016,14(3):536-541. | |
[60] |
Hamberger B,Hahlbrock K.The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes[J].PNAS,2004,101(7):2209-2214.
pmid: 14769935 |
[61] | 雷静,许锋,王晓辉,等.银杏4-香豆酸辅酶A连接酶基因的克隆与序列分析[J].长江大学学报:自科版,2016,13(15):42-48, 5. |
[62] |
Lindermayr C,Möllers B,Fliegmann J,et al.Divergent members of a soybean(Glycine maxL. )4-coumarate:coenzyme A ligase gene family[J].Eur J Biochem,2002,269(4):1304-1315.
pmid: 11856365 |
[63] |
Yuan Y,Yu S,Yu J,et al.Predicting the function of 4-coumarate:CoA ligase(LJ4CL1)in Lonicera japonica[J].Int J Mol Sci,2014,15(2):2386-2399.
doi: 10.3390/ijms15022386 pmid: 24518682 |
[64] |
Sun H,Li Y,Feng S,et al.Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynjournal in rice[J].Biochem Biophys Res Commun,2013,430(3):1151-1156.
doi: 10.1016/j.bbrc.2012.12.019 URL |
[65] |
Saballos A,Sattler SE,Sanchez E,et al.Brown midrib2(Bmr2)encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynjournal in Sorghum(Sorghum bicolor(L. )Moench)[J].Plant J,2012,70(5):818-830.
doi: 10.1111/j.1365-313X.2012.04933.x URL |
[66] |
Zhang C,Zang Y,Liu P,et al.Characterization, functional analysis and application of 4-Coumarate:CoA ligase genes from Populus trichocarpa[J].J Biotechnol,2019,302:92-100.
doi: S0168-1656(19)30779-5 pmid: 31233773 |
[67] | 孙海燕.正向选择驱动被子植物4-香豆酸辅酶A连接酶基因的功能分化[D].武汉:华中农业大学,2013. |
Sun HY.Positive selection drives adaptive diversification of the 4-coumarate:CoA ligase(4CL)gene in angiosperms[D].Wuhan:Huazhong Agricultural University,2013. | |
[68] |
Ehlting J,Büttner D,Wang Q,et al.Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms[J].Plant J,1999,19(1):9-20.
pmid: 10417722 |
[69] |
Li C,Wang X,Ran L,et al.PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa[J].Plant Cell Physiol,2015,56(12):2436-2446.
doi: 10.1093/pcp/pcv157 URL |
[70] | 张改革,黎建辉,林二培,等.杉木Cl4CL基因的克隆及表达分析[J].分子植物育种,2020,18(6):1832-1837. |
Zhang GG,Li JH,Lin EP,et al.Cloning of Cl4CL gene and its expression analysis in Chinese fir[J].Mol Plant Breed,2020,18(6):1832-1837. | |
[71] | Nakano Y,Yamaguchi M,Endo H,et al.NAC-MYB-based transcriptional regulation of secondary cell wall biosynjournal in land plants[J].Front Plant Sci,2015,6:288. |
[72] | 杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125. |
Du XM,Yin WX,Zhao YX,et al.The production and scavenging of reactive oxygen species in plants[J].Chin J Biotechnol,2001,17(2):121-125. | |
[73] | 赵彩芳.大赖草木质素及相关合成基因的表达分析[D].成都:四川农业大学,2019. |
Zhao C F.Expression analysis of lignin and related synthetic genes of Leymus chinensis[D].Chengdu:Sichuan Agricultural University,2019. | |
[74] | 宋倩,邓勋,宋瑞清.糙皮侧耳多功能过氧化物酶基因异源表达及其对玉米秸秆木质素的降解[J].吉林农业大学学报,2020,1(11):5668. |
Song Q,Deng X,Song R Q.Expression of a Pleurotus ostreatus versatile peroxidase gene in Pichia pastoris and its degradation of corn stover lignin[J].Journal of Jilin Agricultural University,2020,1(11):5668. | |
[75] |
Wong DW.Structure and action mechanism of ligninolytic enzymes[J].Appl Biochem Biotechnol,2009,157(2):174-209.
doi: 10.1007/s12010-008-8279-z URL |
[76] | 董金龙.金银花中过氧化物酶的纯化及性质研究[D].洛阳:河南科技大学,2017. |
Dong JL.Study on purification and characterisation of peroxidase from honeysuckle[D].Luoyang:Henan University of Science and Technology,2017. | |
[77] |
Chen X,Wang H,Li X,et al.Molecular cloning and functional analysis of 4-Coumarate:CoA ligase 4(4CL-like 1)from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synjournal[J].BMC Plant Biol,2019,19(1):231.
doi: 10.1186/s12870-019-1812-0 URL |
[78] | Zhang CH,Ma T,Luo WC,et al.Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress[J].Genes:Basel,2015,6(3):901-917. |
[79] |
Oliveira MB,de Andrade RV,Grossi-de-Sá MF,et al.Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris interaction[J].Front Microbiol,2015,6:1162.
doi: 10.3389/fmicb.2015.01162 pmid: 26579080 |
[80] |
Chen X,Fang X,Zhang YY,et al.Overexpression of a soybean 4-coumaric acid:coenzyme A ligase(GmPI4L)enhances resistance to Phytophthora sojae in soybean[J].Funct Plant Biol,2019,46(4):304.
doi: 10.1071/FP18111 pmid: 32172740 |
[81] | 赵晶.生防细菌sneb159和sneb517对大豆胞囊线虫的防效及机理研究[D].沈阳:沈阳农业大学,2020. |
Zhao J.The effect and mechanism for biocontrol bacteria Sneb159 and Sneb517 against Heterodera glycines[D].Shenyang:Shenyang Agricultural University,2020. | |
[82] |
Gui J,Luo L,Zhong Y,et al.Phosphorylation of LTF1, an MYB transcription factor in Populus, Acts as a sensory switch regulating lignin biosynjournal in wood cells[J].Mol Plant,2019,12(10):1325-1337.
doi: 10.1016/j.molp.2019.05.008 URL |
[83] |
Tian Q,Wang X,Li C,et al.Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynjournal during wood formation[J].PLoS One,2013,8(10):e76369.
doi: 10.1371/journal.pone.0076369 URL |
[84] |
Sun YM,Ren S,Ye SL,et al.Identification and functional characterization of PtoMYB055 involved in the regulation of the lignin biosynjournal pathway in Populus tomentosa[J].Int J Mol Sci,2020,21(14):4857.
doi: 10.3390/ijms21144857 URL |
[85] |
Xu C,Fu X,Liu R,et al.PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis[J].Tree Physiol,2017,37(12):1713-1726.
doi: 10.1093/treephys/tpx093 URL |
[86] |
McCarthy RL,Zhong R,Fowler S,et al.The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynjournal[J].Plant Cell Physiol,2010,51(6):1084-1090.
doi: 10.1093/pcp/pcq064 pmid: 20427511 |
[87] |
An C,Sheng LP,Du XP,et al.Overexpression of CmMYB15 provides Chrysanthemum resistance to aphids by regulating the biosynjournal of lignin[J].Hortic Res,2019,6(1):1-10.
doi: 10.1038/s41438-018-0066-6 URL |
[88] |
Zhang L,Lilley CJ,Imren M,et al.The complex cell wall composition of syncytia induced by plant parasitic cyst Nematodes reflects both function and host plant[J].Front Plant Sci,2017,8:1087.
doi: 10.3389/fpls.2017.01087 pmid: 28680436 |
[89] |
Uhlmann A,Ebel J.Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean(Glycine max L. )against pathogen attack[J].Plant Physiol,1993,102(4):1147-1156.
pmid: 8278545 |
[90] | 邢朝斌,冯若宣,王志焱,等.多穗柯4-香豆酸辅酶A连接酶基因的克隆和表达分析[J].经济林研究,2019,37(3):16-21. |
Xing ZB,Feng RX,Wang ZY,et al.Cloning and expression analysis on 4-coumarate-CoA ligase gene in Lithocarpus polystachyus[J].Non Wood For Res,2019,37(3):16-21. | |
[91] | 李良,王小兵,杨蕾,等.四种植物中对香豆酸:辅酶A连接酶(4CL)的活性定量分析与酶调控组分的含量关系研究(英文)[J].中国天然药物,2010,8(4):274-279. |
Li L,Wang XB,Yang L,et al.Quantitative evaluation of 4-coumarate:CoA ligase(4CL)activity and correlated chemical constituents in four plant materials by chromatographic analysis[J].Chin J Nat Med,2010,8(4):274-279.
doi: 10.3724/SP.J.1009.2010.00274 URL |
|
[92] |
Xiong WD,Wu ZY,Liu YC,et al.Mutation of 4-coumarate:coenzyme A ligase 1 gene affects lignin biosynjournal and increases the cell wall digestibility in maize brown midrib5 mutants[J].Biotechnol Biofuels,2019,12:82.
doi: 10.1186/s13068-019-1421-z URL |
[93] |
Park JJ,Yoo CG,Flanagan A,et al.Defined Tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1(Pv4CL1)gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release[J].Biotechnol Biofuels,2017,10:284.
doi: 10.1186/s13068-017-0972-0 URL |
[94] |
Ithal N,Recknor J,Nettleton D,et al.Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J].Mol Plant Microbe Interactions,2007,20(5):510-525.
doi: 10.1094/MPMI-20-5-0510 URL |
[95] |
Hosseini P,Matthews BF.Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction[J].BMC Plant Biol,2014,14:300.
doi: 10.1186/s12870-014-0300-9 pmid: 25421055 |
[96] |
Matthews BF,Beard H,MacDonald MH,et al.Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode[J].Planta,2013,237(5):1337-1357.
doi: 10.1007/s00425-013-1840-1 URL |
[97] |
Edens RM,Anand SC,Bolla RI.Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines[J].J Nematol,1995,27(3):292-303.
pmid: 19277292 |
[98] |
Zhang B,Gao Y,Zhang L,et al.The plant cell wall:Biosynjournal, construction, and functions[J].J Integr Plant Biol,2021,63(1):251-272.
doi: 10.1111/jipb.v63.1 URL |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[3] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[6] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[7] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[8] | WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi. Humification Process and Microbial Driving Mechanism of Composting [J]. Biotechnology Bulletin, 2022, 38(5): 22-28. |
[9] | HAN Dong-jing, WANG Zhi-hua, ZHOU Ning, LIU Guo-qing, YANG Shao-hua, WANG Wen-jun. Screening and Degradation Effect of Lignin-degrading Bacteria in Termite Nurseries [J]. Biotechnology Bulletin, 2022, 38(3): 113-120. |
[10] | WANG Bo-ya, JIANG Yong, HUANG Yan, CAO Ying, HU Shang-lian. Cloning and Functional Analysis of BeCesA4 in Bambusa emeiensis [J]. Biotechnology Bulletin, 2022, 38(11): 185-193. |
[11] | SUN Shu-fang, LUO Yong-li, LI Chun-hui, JIN Min, XU Qian. Determination of Lignin Monomer Crosslinking Structures in Wheat Stems by UPLC-MS/MS [J]. Biotechnology Bulletin, 2022, 38(10): 66-72. |
[12] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[13] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
[14] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[15] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||