Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 148-157.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0819
Previous Articles Next Articles
XIE Yang(), ZHOU Guo-yan, SU Hang, XING Yu-meng, YAN Li-ying
Received:
2023-08-20
Online:
2023-12-26
Published:
2024-01-11
Contact:
XIE Yang
E-mail:xieyangly123@163.com
XIE Yang, ZHOU Guo-yan, SU Hang, XING Yu-meng, YAN Li-ying. Transcriptome Analysis of Cucumber Seeds Early and Late Germination Under PEG Drought Simulation[J]. Biotechnology Bulletin, 2023, 39(12): 148-157.
Fig. 1 Seed germination characteristics of dry cucumber under PEG drought simulation A, C: Bud length at the early germination stage, scale=5 mm. B, D: Bud length + root length at the late germination stage, scale=2 cm. * significant difference at P<0.05, ** significant difference at P<0.01
样本 Sample | 原始reads Raw reads | 干净reads Clean reads | 错误率 Error rate | Q20/% | GC比率 GC pct/% |
---|---|---|---|---|---|
DT1_CK | 44 400 920 | 43 834 726 | 0.03 | 97.20 | 44.66 |
DT1_T | 39 592 606 | 39 021 166 | 0.03 | 97.58 | 44.43 |
DS1_CK | 41 022 958 | 40 686 226 | 0.03 | 97.10 | 44.02 |
DS1_T | 42 691 442 | 42 269 126 | 0.03 | 97.30 | 44.04 |
DT2_CK | 41 340 818 | 40 790 806 | 0.03 | 97.13 | 43.72 |
DT2_T | 44 591 656 | 43 820 724 | 0.03 | 97.23 | 43.71 |
DS2_CK | 42 263 290 | 41 550 102 | 0.03 | 97.34 | 43.66 |
DS2_T | 43 966 094 | 43 058 866 | 0.03 | 97.22 | 43.81 |
Table 1 Quality summary of samples sequencing data
样本 Sample | 原始reads Raw reads | 干净reads Clean reads | 错误率 Error rate | Q20/% | GC比率 GC pct/% |
---|---|---|---|---|---|
DT1_CK | 44 400 920 | 43 834 726 | 0.03 | 97.20 | 44.66 |
DT1_T | 39 592 606 | 39 021 166 | 0.03 | 97.58 | 44.43 |
DS1_CK | 41 022 958 | 40 686 226 | 0.03 | 97.10 | 44.02 |
DS1_T | 42 691 442 | 42 269 126 | 0.03 | 97.30 | 44.04 |
DT2_CK | 41 340 818 | 40 790 806 | 0.03 | 97.13 | 43.72 |
DT2_T | 44 591 656 | 43 820 724 | 0.03 | 97.23 | 43.71 |
DS2_CK | 42 263 290 | 41 550 102 | 0.03 | 97.34 | 43.66 |
DS2_T | 43 966 094 | 43 058 866 | 0.03 | 97.22 | 43.81 |
KEGG ID | 基因ID Gene ID | RPKM值 RPKM value | 基因描述 Gene description | |||||
---|---|---|---|---|---|---|---|---|
DT1_T | DT1_CK | log2FC | DS1_T | DS1_CK | log2FC | |||
csv00591 | CsaV3_4G023820 | 2 660.909 | 177.544 | 3.905 | 8 268.943 | 3.90E+02 | 4.406 | 亚油酸13S -脂氧合酶2-1 Linoleate 13S-lipoxygenase 2-1 |
CsaV3_2G006420 | 20.813 | 1.39E-17 | 7.391 | 2 200.098 | 7.36E+01 | 4.899 | 亚油酸9S -脂氧合酶4 Linoleate 9S-lipoxygenase 4 | |
CsaV3_4G023810 | 9.458 | 1.39E-17 | 6.263 | 282.605 | 46.658 | 2.595 | 亚油酸13S -脂氧合酶2-1 Linoleate 13S-lipoxygenase 2-1 | |
csv00040 | CsaV3_2G025090 | 223.315 | 7.402 | 4.893 | 1 319.479 | 129.599 | 3.347 | 果胶裂解酶5 Pectate lyase 5 |
CsaV3_3G011280 | 101.247 | 9.516 | 3.395 | 670.348 | 58.062 | 3.527 | 果胶裂解酶8 Pectate lyase 8 | |
CsaV3_3G028700 | 459.883 | 80.320 | 2.516 | 1 844.185 | 193.879 | 3.249 | 果胶裂解酶8 Pectate lyase 8 | |
CsaV3_2G014800 | 34.061 | 7.402 | 2.184 | 506.377 | 1.24E+01 | 5.333 | 果胶甲基酯酶11 Pectin methylesterase 11, PME11 | |
csv00940 | CsaV3_1G042480 | 4329.184 | 54.957 | 6.296 | 34 647.010 | 1 795.690 | 4.270 | β-葡糖苷酶12 Beta-glucosidase 12 |
CsaV3_6G006890 | 294.286 | 26.424 | 3.471 | 1 065.807 | 1.39E-17 | 13.059 | 过氧化物酶61 Peroxidase 61 | |
CsaV3_3G030410 | 80.427 | 19.027 | 2.073 | 217.017 | 31.106 | 2.798 | 4-香豆酸-辅酶a连接酶异构体 4-coumarate--CoA ligase isoform 7,4CL7 | |
CsaV3_2G035150 | 14.190 | 1.39E-17 | 6.842 | 658.773 | 9.334 | 6.122 | 氧化物酶39 Peroxidase 39,ATP19a | |
CsaV3_2G009070 | 36.900 | 7.402 | 2.299 | 54.975 | 3.113 | 4.090 | 细胞色素P450 Cytochrome P450,CYP73A100 | |
CsaV3_6G039690 | 17.028 | 2.118 | 2.938 | 42.436 | 4.150 | 3.317 | 苯丙氨酸氨裂合酶 Phenylalanine ammonia-lyase | |
csv04075 | CsaV3_2G013210 | 45.416 | 1.39E-17 | 8.511 | 2 138.368 | 17.628 | 6.913 | 激素响应蛋白 Auxin-responsive protein, IAA14 |
CsaV3_5G023170 | 65.288 | 5.289 | 3.596 | 652.022 | 81.907 | 2.991 | 生长素转运蛋白3 Auxin transporter-like protein 3 | |
CsaV3_6G007970 | 7.566 | 4.86E+01 | -2.663 | 87.770 | 5.187 | 4.049 | 激素响应蛋白 Auxin responsive protein | |
CsaV3_7G027610 | 423.925 | 67.639 | 2.646 | 548.817 | 99.533 | 2.462 | 吲哚-3-乙酸诱导蛋白 Indole-3-acetic acid-induced protein, ARG13 | |
CsaV3_1G030250 | 20.813 | 1.062 | 4.148 | 64.621 | 5.187 | 3.608 | EIN3结合F-box蛋白 EIN3-binding F-box protein 2 | |
CsaV3_2G004130 | 719.161 | 75.036 | 3.259 | 1 417.861 | 305.850 | 2.212 | 吲哚-3-乙酸诱导蛋白 Indole-3-acetic acid-induced protein, ARG13 | |
CsaV3_3G005590 | 17.975 | 1.39E-17 | 7.180 | 42.436 | 2.0767 | 4.275 | 吲哚-3-乙酸-氨基合成酶Indole-3-acetic acid-amido synthetase, GH3.6 |
Table 2 Differential gene analysis of KEGG enrichment
KEGG ID | 基因ID Gene ID | RPKM值 RPKM value | 基因描述 Gene description | |||||
---|---|---|---|---|---|---|---|---|
DT1_T | DT1_CK | log2FC | DS1_T | DS1_CK | log2FC | |||
csv00591 | CsaV3_4G023820 | 2 660.909 | 177.544 | 3.905 | 8 268.943 | 3.90E+02 | 4.406 | 亚油酸13S -脂氧合酶2-1 Linoleate 13S-lipoxygenase 2-1 |
CsaV3_2G006420 | 20.813 | 1.39E-17 | 7.391 | 2 200.098 | 7.36E+01 | 4.899 | 亚油酸9S -脂氧合酶4 Linoleate 9S-lipoxygenase 4 | |
CsaV3_4G023810 | 9.458 | 1.39E-17 | 6.263 | 282.605 | 46.658 | 2.595 | 亚油酸13S -脂氧合酶2-1 Linoleate 13S-lipoxygenase 2-1 | |
csv00040 | CsaV3_2G025090 | 223.315 | 7.402 | 4.893 | 1 319.479 | 129.599 | 3.347 | 果胶裂解酶5 Pectate lyase 5 |
CsaV3_3G011280 | 101.247 | 9.516 | 3.395 | 670.348 | 58.062 | 3.527 | 果胶裂解酶8 Pectate lyase 8 | |
CsaV3_3G028700 | 459.883 | 80.320 | 2.516 | 1 844.185 | 193.879 | 3.249 | 果胶裂解酶8 Pectate lyase 8 | |
CsaV3_2G014800 | 34.061 | 7.402 | 2.184 | 506.377 | 1.24E+01 | 5.333 | 果胶甲基酯酶11 Pectin methylesterase 11, PME11 | |
csv00940 | CsaV3_1G042480 | 4329.184 | 54.957 | 6.296 | 34 647.010 | 1 795.690 | 4.270 | β-葡糖苷酶12 Beta-glucosidase 12 |
CsaV3_6G006890 | 294.286 | 26.424 | 3.471 | 1 065.807 | 1.39E-17 | 13.059 | 过氧化物酶61 Peroxidase 61 | |
CsaV3_3G030410 | 80.427 | 19.027 | 2.073 | 217.017 | 31.106 | 2.798 | 4-香豆酸-辅酶a连接酶异构体 4-coumarate--CoA ligase isoform 7,4CL7 | |
CsaV3_2G035150 | 14.190 | 1.39E-17 | 6.842 | 658.773 | 9.334 | 6.122 | 氧化物酶39 Peroxidase 39,ATP19a | |
CsaV3_2G009070 | 36.900 | 7.402 | 2.299 | 54.975 | 3.113 | 4.090 | 细胞色素P450 Cytochrome P450,CYP73A100 | |
CsaV3_6G039690 | 17.028 | 2.118 | 2.938 | 42.436 | 4.150 | 3.317 | 苯丙氨酸氨裂合酶 Phenylalanine ammonia-lyase | |
csv04075 | CsaV3_2G013210 | 45.416 | 1.39E-17 | 8.511 | 2 138.368 | 17.628 | 6.913 | 激素响应蛋白 Auxin-responsive protein, IAA14 |
CsaV3_5G023170 | 65.288 | 5.289 | 3.596 | 652.022 | 81.907 | 2.991 | 生长素转运蛋白3 Auxin transporter-like protein 3 | |
CsaV3_6G007970 | 7.566 | 4.86E+01 | -2.663 | 87.770 | 5.187 | 4.049 | 激素响应蛋白 Auxin responsive protein | |
CsaV3_7G027610 | 423.925 | 67.639 | 2.646 | 548.817 | 99.533 | 2.462 | 吲哚-3-乙酸诱导蛋白 Indole-3-acetic acid-induced protein, ARG13 | |
CsaV3_1G030250 | 20.813 | 1.062 | 4.148 | 64.621 | 5.187 | 3.608 | EIN3结合F-box蛋白 EIN3-binding F-box protein 2 | |
CsaV3_2G004130 | 719.161 | 75.036 | 3.259 | 1 417.861 | 305.850 | 2.212 | 吲哚-3-乙酸诱导蛋白 Indole-3-acetic acid-induced protein, ARG13 | |
CsaV3_3G005590 | 17.975 | 1.39E-17 | 7.180 | 42.436 | 2.0767 | 4.275 | 吲哚-3-乙酸-氨基合成酶Indole-3-acetic acid-amido synthetase, GH3.6 |
基因ID Gene ID | 数据库 Database | 染色体CHROM | 位置POS/bp | 参考碱基EF | 实际碱基ALT | 质量QUAL | 测序深度DP | 基因型GT |
---|---|---|---|---|---|---|---|---|
CsaV3_4G023820 | DS1-CK | chr.4 | 13 866 362 | C | G | 30.60 | 11 | 0/1 |
DS1-T | chr.4 | 13 866 362 | C | G | 4 177.60 | 234 | 0/1 | |
CsaV3_2G006420 | DS1-CK | chr.2 | 3 052 439 | C | T | 254.60 | 11 | 0/1 |
DS1-T | chr.2 | 3 052 439 | C | T | 852.60 | 194 | 0/1 | |
CsaV3_2G025090 | DT1-CK | chr.2 | 17 299 201 | G | A | 353.02 | 10 | 0/1 |
DT1-T | chr.2 | 17 301 308 | A | T | 6 787.03 | 176 | 0/1 | |
chr.2 | 17 303 282 | G | C | 879.03 | 24 | 0/1 | ||
chr.2 | 17 305 064 | T | C | 347.00 | 12 | 0/1 | ||
chr.2 | 17 305 060 | T | C | 347.00 | 12 | 0/1 |
Table 3 Integration analysis of SNP variation sites and differential genes
基因ID Gene ID | 数据库 Database | 染色体CHROM | 位置POS/bp | 参考碱基EF | 实际碱基ALT | 质量QUAL | 测序深度DP | 基因型GT |
---|---|---|---|---|---|---|---|---|
CsaV3_4G023820 | DS1-CK | chr.4 | 13 866 362 | C | G | 30.60 | 11 | 0/1 |
DS1-T | chr.4 | 13 866 362 | C | G | 4 177.60 | 234 | 0/1 | |
CsaV3_2G006420 | DS1-CK | chr.2 | 3 052 439 | C | T | 254.60 | 11 | 0/1 |
DS1-T | chr.2 | 3 052 439 | C | T | 852.60 | 194 | 0/1 | |
CsaV3_2G025090 | DT1-CK | chr.2 | 17 299 201 | G | A | 353.02 | 10 | 0/1 |
DT1-T | chr.2 | 17 301 308 | A | T | 6 787.03 | 176 | 0/1 | |
chr.2 | 17 303 282 | G | C | 879.03 | 24 | 0/1 | ||
chr.2 | 17 305 064 | T | C | 347.00 | 12 | 0/1 | ||
chr.2 | 17 305 060 | T | C | 347.00 | 12 | 0/1 |
基因ID Gene ID | 序列Sequence(5'-3') |
---|---|
Actin-F | ATTGTTCTCAGTGGTGGTTCTAC |
Actin-R | CCTTTGAGATCCACATCTGCT |
CsaV3_4G023820-F | ACTGCTGTCAACTTCATT |
CsaV3_4G023820-R | TTGGTCATAGTCCTCTGT |
CsaV3_2G006420-F | CCTCTAATCATTCGTCGTCTT |
CsaV3_2G006420-R | GTCTTCTTCGGTAATCTTGCTA |
CsaV3_2G025090-F | GGTTGATTGATGCGATTC |
CsaV3_2G025090-R | ATGTTCTTATCTTGAGTATAGGA |
Table 4 Integration analysis of SNP variation sites and differential genes
基因ID Gene ID | 序列Sequence(5'-3') |
---|---|
Actin-F | ATTGTTCTCAGTGGTGGTTCTAC |
Actin-R | CCTTTGAGATCCACATCTGCT |
CsaV3_4G023820-F | ACTGCTGTCAACTTCATT |
CsaV3_4G023820-R | TTGGTCATAGTCCTCTGT |
CsaV3_2G006420-F | CCTCTAATCATTCGTCGTCTT |
CsaV3_2G006420-R | GTCTTCTTCGGTAATCTTGCTA |
CsaV3_2G025090-F | GGTTGATTGATGCGATTC |
CsaV3_2G025090-R | ATGTTCTTATCTTGAGTATAGGA |
[1] |
Liu XW, Wang T, Bartholomew E, et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber(Cucumis sativus L.)[J]. Hortic Res, 2018, 5(1): 1-14.
doi: 10.1038/s41438-017-0012-z |
[2] | 张强, 韩兰英, 郝小翠, 等. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性[J]. 气象学报, 2015, 73(6): 1092-1103. |
Zhang Q, Han LY, Hao XC, et al. On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the North and the South[J]. Acta Meteorol Sin, 2015, 73(6): 1092-1103. | |
[3] |
Wang WJ, Zhang Y, Xu C, et al. Cucumber ECERIFERUM1(CsCER1), which influences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis[J]. Plant Mol Biol, 2015, 87(3): 219-233.
doi: 10.1007/s11103-014-0271-0 URL |
[4] | 许耀照, 曾秀存, 王勤礼, 等. PEG模拟干旱胁迫对不同黄瓜品种种子萌发的影响[J]. 中国蔬菜, 2010(14): 54-59. |
Xu YZ, Zeng XC, Wang QL, et al. Effects of PEG simulated drought stress on seed germination of different cucumber varieties[J]. China Veg, 2010(14): 54-59. | |
[5] | 宋杰. 一个黄瓜干旱响应基因的克隆及其功能分析[D]. 泰安: 山东农业大学, 2019. |
Song J. Clone and functional analysis of a cucumber gene in response to drought stress[D]. Tai'an: Shandong Agricultural University, 2019. | |
[6] | 肖凡, 蒋景龙, 段敏. 干旱和复水条件下黄瓜幼苗生长和生理生化的响应[J]. 南方农业学报, 2019, 50(10): 2241-2248. |
Xiao F, Jiang JL, Duan M. Growth and physiological-biochemical responses of Cucumis sativus L. seedlings under drought and re-watering conditions[J]. J South Agric, 2019, 50(10): 2241-2248. | |
[7] | 银珊珊, 周国彦, 夏小捷, 等. 种子引发对干旱胁迫下黄瓜生理及品质的影响[J]. 北方园艺, 2022(17): 9-17. |
Yin SS, Zhou GY, Xia XJ, et al. Effects of seed priming on physiology and quality of cucumber under drought stress[J]. North Hortic, 2022(17): 9-17. | |
[8] | 马福林, 马玉花. 干旱胁迫对植物的影响及植物的响应机制[J]. 宁夏大学学报: 自然科学版, 2022, 43(4): 391-399. |
Ma FL, Ma YH. Effect of drought stress on plants and their response mechanism[J]. J Ningxia Univ Nat Sci Ed, 2022, 43(4): 391-399. | |
[9] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5): 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[10] |
Vaidya AS, Helander JDM, Peterson FC, et al. Dynamic control of plant water use using designed ABA receptor agonists[J]. Science, 2019, 366(6464): eaaw8848.
doi: 10.1126/science.aaw8848 URL |
[11] | 赵咏梅. 植物细胞对干旱胁迫信号的感知与传导[J]. 生物学教学, 2008, 33(3): 7-8. |
Zhao YM. Plant cells signals of sensing and transduction in drought stress[J]. Biology Teaching, 2008, 33(3): 7-8. | |
[12] | 徐晓丹, 冷淼, 张明媛, 等. 基于转录组的小豆SSR分子标记开发及其应用[J]. 干旱地区农业研究, 2023, 41(1): 13-18. |
Xu XD, Leng M, Zhang MY, et al. Development and application of SSR molecular markers based on transcriptome sequencing of adzuki bean[J]. Agric Res Arid Areas, 2023, 41(1): 13-18. | |
[13] | 谢洋, 邢雨蒙, 周国彦, 等. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报: 2023, 39(3): 152-162. |
Xie Y, Xing YM, Zhou GY, et al. Transcriptome analysis of diploid and autotetraploid in cucumber fruit[J]. Biotechnol Bull, 2023, 39(3): 152-162.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0974 |
|
[14] |
Azimian J, Hervan EM, Azadi A, et al. Transcriptome analysis of a Triticum aestivum landrace(Roshan)in response to salt stress conditions[J]. Plant Genet Resour, 2021, 19(3): 261-274.
doi: 10.1017/S1479262121000319 URL |
[15] |
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[16] |
Bray N, Pimentel H, Melsted P, et al. Near-optimal RNA-seq quantification[J]. Nat Biotechnol. 2016, 34(5): 525-527.
doi: 10.1038/nbt.3519 |
[17] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[18] |
Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biol, 2010, 11(2): R14.
doi: 10.1186/gb-2010-11-2-r14 URL |
[19] |
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic acids res, 2000, 28(1): 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[20] |
Wan HJ, Zhao ZG, Qian CT, et al. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber[J]. Anal Biochem, 2010, 399(2): 257-261.
doi: 10.1016/j.ab.2009.12.008 pmid: 20005862 |
[21] | 倪知游, 梁东, 高帆, 等. 植物响应干旱的转录组学研究进展[J]. 分子植物育种, 2018, 16(8): 2460-2465. |
Ni ZY, Liang D, Gao F, et al. Advances in transcriptome research on plant response to drought[J]. Mol Plant Breed, 2018, 16(8): 2460-2465. | |
[22] | 张蕾, 阮羽萱, 潘娇, 等. 甘蓝型油菜响应干旱胁迫的转录组分析[J]. 江苏农业科学, 2023, 51(5): 51-55. |
Zhang L, Ruan YX, Pan J, et al. Transcriptome analysis of response to drought stress in Brassica napus[J]. Jiangsu Agric Sci, 2023, 51(5): 51-55. | |
[23] | 张婷茹, 苗荣庆, 臧威, 等. 角果碱蓬响应干旱胁迫的转录组分析[J]. 植物生理学报, 2023, 59(01): 89-100. |
Zhang TR, Miao RQ, Zang W, et al. Transcriptomic analysis of Suaeda corniculata in response to drought stress[J]. Plant Phys-iol J, 2023, 59(1): 89-100. | |
[24] | 卢坤, 张琳, 曲存民, 等. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因[J]. 中国农业科学, 2015, 48(4): 630-645. |
Lu K, Zhang L, Qu CM, et al. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing[J]. Sci Agric Sin, 2015, 48(4): 630-645. | |
[25] | 王玉斌, 牛皓, 吕鑫, 等. 旱敏感型与耐旱型高粱材料对干旱胁迫反应的转录组差异分析[J]. 分子植物育种, 2022, 20(20): 6656-6667. |
Wang YB, Niu H, Lü X, et al. Analysis of transcriptome differences of drought-sensitive and drought-tolerant sorghum materials to drought stress[J]. Mol Plant Breed, 2022, 20(20): 6656-6667. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[3] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[4] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[5] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[6] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[7] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[8] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[9] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[10] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[11] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[12] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[13] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[14] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[15] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||