Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 55-64.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0841
Previous Articles Next Articles
ZHU Tian-yi1,2(), KONG Gui-mei1,2(), JIAO Hong-mei1,2, GUO Ting-ting1,2, WU Ri-han1,2, LIU Cui-cui1,2, GAO Cheng-feng1,2, LI Guo-cai1,2()
Received:
2023-08-29
Online:
2024-02-26
Published:
2024-03-13
Contact:
KONG Gui-mei, LI Guo-cai
E-mail:15705273927@163.com;gmkong@yzu.edu.cn;gcli@yzu.edu.cn
ZHU Tian-yi, KONG Gui-mei, JIAO Hong-mei, GUO Ting-ting, WU Ri-han, LIU Cui-cui, GAO Cheng-feng, LI Guo-cai. Establishment of A Bacterial Model of CRISPR/Cas9 Mediated adeG Gene Knockout in Escherichia coli[J]. Biotechnology Bulletin, 2024, 40(2): 55-64.
引物名称 Name of primer | 引物序列 Sequence of primer(5'-3') | 退火温度 Annealing temperature/℃ | 长度 Size of production/bp | 参考文献 Reference |
---|---|---|---|---|
adeF-F | GGTGTCGACCAAGATAAACG | 55 | 207 | [ |
adeF-R | GTGAATTTGGCATAGGGACG | |||
adeG-F | GGTGCCCAACAAGATGGCTT | 58 | 770 | This study |
adeG-R | ATCGCGTAGTCACCAGATCC | |||
adeH-F | TGTTGTCCTCACTCATGGGA | 60 | 458 | This study |
adeH-R | TAGATCCGCTGTTGCTGCGTT | |||
adeL-F | CGAAAGGTAAAGCTGTACCGCC | 60 | 542 | This study |
adeL-R | CGACCGACCTGTAGATTTGG | |||
TadeG-F | AAGGTGCCCAACAAGATGGCTT | 57 | 3 399 | This study |
TadeG-R | AACCTCCTTAATGATCGTGTGGG | |||
sgRNA1-F | AAAACTCGCTGTTTGCTTGAGATTG | 60 | 28 | This study |
sgRNA1-R | AAACCAATCTCAAGCAAACAGCGAG | |||
sgRNA2-F | AAAACCATAGTTACGTAAGTAGGTC | 55 | 28 | This study |
sgRNA2-R | AAACGACCTACTTACGTAACTATGG | |||
sgRNA3-F | AAAACCACCGCGACCGAAATTGTGA | 62 | 28 | This study |
sgRNA3-R | AAACTCACAATTTCGGTCGCGGTGG | |||
DocF | GAAACAAGCGCTCATGAGCCCG | 60 | 524 | This study |
Table 1 Primers used in this study
引物名称 Name of primer | 引物序列 Sequence of primer(5'-3') | 退火温度 Annealing temperature/℃ | 长度 Size of production/bp | 参考文献 Reference |
---|---|---|---|---|
adeF-F | GGTGTCGACCAAGATAAACG | 55 | 207 | [ |
adeF-R | GTGAATTTGGCATAGGGACG | |||
adeG-F | GGTGCCCAACAAGATGGCTT | 58 | 770 | This study |
adeG-R | ATCGCGTAGTCACCAGATCC | |||
adeH-F | TGTTGTCCTCACTCATGGGA | 60 | 458 | This study |
adeH-R | TAGATCCGCTGTTGCTGCGTT | |||
adeL-F | CGAAAGGTAAAGCTGTACCGCC | 60 | 542 | This study |
adeL-R | CGACCGACCTGTAGATTTGG | |||
TadeG-F | AAGGTGCCCAACAAGATGGCTT | 57 | 3 399 | This study |
TadeG-R | AACCTCCTTAATGATCGTGTGGG | |||
sgRNA1-F | AAAACTCGCTGTTTGCTTGAGATTG | 60 | 28 | This study |
sgRNA1-R | AAACCAATCTCAAGCAAACAGCGAG | |||
sgRNA2-F | AAAACCATAGTTACGTAAGTAGGTC | 55 | 28 | This study |
sgRNA2-R | AAACGACCTACTTACGTAACTATGG | |||
sgRNA3-F | AAAACCACCGCGACCGAAATTGTGA | 62 | 28 | This study |
sgRNA3-R | AAACTCACAATTTCGGTCGCGGTGG | |||
DocF | GAAACAAGCGCTCATGAGCCCG | 60 | 524 | This study |
Fig. 2 PCR gel electrophoresis of adeLFGH A: adeL; B: adeF; C: adeG; D: adeH. M: DL 2000 marker; 1: AB13; 2: AB7;3: AB31; 4: AB29; 5: AB19; 6: AB18; 7: AB32; 8: AB15; 9: AB14; 10: AB21;11: AB2; 12: AB34; 13: AB26
菌株 Strain | 药物及折点Drugs and breakpoints/(μg·μL-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRL | TIC | CAZ | TET | MEM | PE | GEN | TOP | CIP | LVX | ||
(32-64) | (32-64) | (16) | (8) | (4) | (≥4) | (8) | (8) | (2) | (4) | ||
17978 | <4(S) | <4(S) | 2(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | |
AB13 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | >32(R) | <2(S) | |
AB7 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB31 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB29 | >256(R) | >256(R) | 64(R) | >256(R) | 64(R) | <0.5(S) | 128(R) | <2(S) | 32(R) | 32(R) | |
AB19 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | <2(S) | >32(R) | 8(R) | |
AB18 | >256(R) | >256(R) | 128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 16(R) | 4(I) | |
AB32 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 8(R) | <2(S) | |
AB15 | >256(R) | >256(R) | 8(S) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB14 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB21 | >256(R) | >256(R) | 64(R) | >256(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB2 | >256(R) | >256(R) | >128(R) | 128(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB34 | >256(R) | >256(R) | 128(R) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB26 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) |
Table 2 Sensitivity results of ATCC 17978 and 13 strains of A. baumannii to common clinical antibiotics
菌株 Strain | 药物及折点Drugs and breakpoints/(μg·μL-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRL | TIC | CAZ | TET | MEM | PE | GEN | TOP | CIP | LVX | ||
(32-64) | (32-64) | (16) | (8) | (4) | (≥4) | (8) | (8) | (2) | (4) | ||
17978 | <4(S) | <4(S) | 2(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | <0.5(S) | |
AB13 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | >32(R) | <2(S) | |
AB7 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB31 | >256(R) | >256(R) | >128(R) | >128(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB29 | >256(R) | >256(R) | 64(R) | >256(R) | 64(R) | <0.5(S) | 128(R) | <2(S) | 32(R) | 32(R) | |
AB19 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | <2(S) | >32(R) | 8(R) | |
AB18 | >256(R) | >256(R) | 128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 16(R) | 4(I) | |
AB32 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 8(R) | <2(S) | |
AB15 | >256(R) | >256(R) | 8(S) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB14 | >256(R) | >256(R) | >128(R) | 256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB21 | >256(R) | >256(R) | 64(R) | >256(R) | 128(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB2 | >256(R) | >256(R) | >128(R) | 128(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 4(I) | |
AB34 | >256(R) | >256(R) | 128(R) | >256(R) | 64(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) | |
AB26 | >256(R) | >256(R) | >128(R) | 256(R) | 32(R) | <0.5(S) | >128(R) | >128(R) | 32(R) | 8(R) |
Fig. 5 Comparison of adeG-E.coli and DH5α sensitivity to drug 1: Chloramphenicol. 2: Fosfomycin. 3: Furantoin. 4: Ciprofloxacin. 5: Amtronam. 6: Imipenem.7: Gentamicin. 8: Meropenem. 9: Tobramycin. 10: Tetracycline. 11: Doxycycline. 12: Minocycline. 13 Piperacillin. 14: Ticacillin/Clavulanic acid. 15: Piperacillin/Tazobactam. 16: Ceftazidime. 17: Cefepime. 18: Levofloxacin
药物 Drug | 折点 Breakpoints/mm | DH5α抑菌圈直径 Antibacterial circle diameter of DH5α /mm | adeG-E.coli抑菌圈直径 Antibacterial circle diameter of adeG-E.coli /mm | 耐药性变化 Changes in drug resistance |
---|---|---|---|---|
Chloramphenicol | 13-17 | 20 | 16 | S→I |
Fosfomycin | 13-15 | 40 | 32 | S→S |
Furantoin | 15-16 | 33 | 31 | S→S |
Ciprofloxacin | 22-25 | 40 | 30 | S→S |
Amtronam | 18-20 | 33 | 28 | S→S |
Imipenem | 20-22 | 31 | 26 | S→S |
Gentamicin | 13-14 | 22 | 26 | S→S |
Meropenem | 20-22 | 26 | 22 | S→I |
Tobramycin | 13-14 | 23 | 23 | S→S |
Tetracycline | 12-14 | 19 | 17 | S→S |
Doxycycline | 11-13 | 18 | 16 | S→S |
Minocycline | 13-15 | 15 | 13 | S→I |
Piperacillin | 18-20 | 28 | 0 | S→R |
Ticacillin/Clavulanic acid | 15-19 | 28 | 0 | S→R |
Piperacillin/Tazobactam | 18-20 | 26 | 17 | S→R |
Ceftazidime | 18-20 | 28 | 23 | S→S |
Cefepime | 19-24 | 34 | 25 | S→S |
Levofloxacin | 17-20 | 35 | 33 | S→S |
Table 3 Changes in the sensitivity of DH5α and adeG-E.coli to drugs
药物 Drug | 折点 Breakpoints/mm | DH5α抑菌圈直径 Antibacterial circle diameter of DH5α /mm | adeG-E.coli抑菌圈直径 Antibacterial circle diameter of adeG-E.coli /mm | 耐药性变化 Changes in drug resistance |
---|---|---|---|---|
Chloramphenicol | 13-17 | 20 | 16 | S→I |
Fosfomycin | 13-15 | 40 | 32 | S→S |
Furantoin | 15-16 | 33 | 31 | S→S |
Ciprofloxacin | 22-25 | 40 | 30 | S→S |
Amtronam | 18-20 | 33 | 28 | S→S |
Imipenem | 20-22 | 31 | 26 | S→S |
Gentamicin | 13-14 | 22 | 26 | S→S |
Meropenem | 20-22 | 26 | 22 | S→I |
Tobramycin | 13-14 | 23 | 23 | S→S |
Tetracycline | 12-14 | 19 | 17 | S→S |
Doxycycline | 11-13 | 18 | 16 | S→S |
Minocycline | 13-15 | 15 | 13 | S→I |
Piperacillin | 18-20 | 28 | 0 | S→R |
Ticacillin/Clavulanic acid | 15-19 | 28 | 0 | S→R |
Piperacillin/Tazobactam | 18-20 | 26 | 17 | S→R |
Ceftazidime | 18-20 | 28 | 23 | S→S |
Cefepime | 19-24 | 34 | 25 | S→S |
Levofloxacin | 17-20 | 35 | 33 | S→S |
Fig. 7 Results of pCas9-sgRNA(adeG)on some drug sensitivity paper slides A-13: Piperacillin. A-14: Ticacillin/Clavulanic acid. A-15: Piperacillin/Tazobactam. B-9: Tobramycin. B-10: Tetracycline. B-11: Doxycycline. B-12: Minocycline
菌株Strain | 抑菌圈直径Antibacterial circle diameter /mm | 耐药性变化Changes in drug resistance |
---|---|---|
adeG-E.coli | 17 | - |
pCas9-sgRNA1(adeG) | 25 | R→S |
pCas9-sgRNA2(adeG) | 20 | R→I |
pCas9-sgRNA3(adeG) | 20 | R→I |
Table 4 Drug sensitivity changes of pCas9-sgRNA in piperacillin/tazobactam(compared to adeG-E.coli)
菌株Strain | 抑菌圈直径Antibacterial circle diameter /mm | 耐药性变化Changes in drug resistance |
---|---|---|
adeG-E.coli | 17 | - |
pCas9-sgRNA1(adeG) | 25 | R→S |
pCas9-sgRNA2(adeG) | 20 | R→I |
pCas9-sgRNA3(adeG) | 20 | R→I |
药物Drug | 抑菌圈直径Antibacterial circle diameter /mm | ||
---|---|---|---|
adeG-E.coli | pCas9-sgRNA1(adeG) | ||
Tobramycin | 15 | 20 | |
Tetracycline | 20 | 26 | |
Doxycycline | 18 | 22 | |
Minocycline | 19 | 24 |
Table 5 Partial drug sensitivity changes of pCas9-sgRNA1(adeG)(compared to adeG-E.coli)
药物Drug | 抑菌圈直径Antibacterial circle diameter /mm | ||
---|---|---|---|
adeG-E.coli | pCas9-sgRNA1(adeG) | ||
Tobramycin | 15 | 20 | |
Tetracycline | 20 | 26 | |
Doxycycline | 18 | 22 | |
Minocycline | 19 | 24 |
Fig. 8 Identification of pCas9-sgRNA(adeG)plasmid targeted adeG gene M: DL 5000 marker; 1: adeG-E.coli; 2: pCas9; 3: pCas9-sgRNA1(adeG);4: pCas9-sgRNA2(adeG); 5: pCas9-sgRNA3(adeG)
[1] |
Fritzenwanker M, Imirzalioglu C, Herold S, et al. Treatment options for carbapenem- resistant gram-negative infections[J]. Dtsch Arztebl Int, 2018, 115(20-21): 345-352.
doi: 10.3238/arztebl.2018.0345 pmid: 29914612 |
[2] |
Mat Rahim N, Lee H, Strych U, et al. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development[J]. Hum Vaccin Immunother, 2021, 17(10): 3784-3794.
doi: 10.1080/21645515.2021.1927412 URL |
[3] |
Bian XC, Liu XF, et al. Epidemiological and genomic characteristics of Acinetobacter baumannii from different infection sites using comparative genomics[J]. BMC Genomics, 2021, 22(1): 530.
doi: 10.1186/s12864-021-07842-5 |
[4] |
Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.
doi: S1473-3099(17)30753-3 pmid: 29276051 |
[5] |
Pulingam T, Parumasivam T, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome[J]. Eur J Pharm Sci, 2022, 170: 106103.
doi: 10.1016/j.ejps.2021.106103 URL |
[6] |
Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective[J]. Emerg Infect Dis, 2002, 8(4): 347-354.
pmid: 11971765 |
[7] |
Rice LB. Antimicrobial resistance in gram-positive bacteria[J]. Am J Infect Control, 2006, 34(5 Suppl 1): S11-S19; discussion S64-S73.
doi: 10.1016/j.ajic.2006.05.220 pmid: 16813977 |
[8] |
Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
doi: 10.1016/S0140-6736(21)02724-0 pmid: 35065702 |
[9] | Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars?[J]. Health Aff(Millwood), 2006, 25(2): 420-428. |
[10] |
Sulaiman JE, Lam H. Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance[J]. Front Microbiol, 2021, 12: 617412.
doi: 10.3389/fmicb.2021.617412 URL |
[11] |
Tao S, Chen HM, Li N, et al. The application of the CRISPR-cas system in antibiotic resistance[J]. Infect Drug Resist, 2022, 15: 4155-4168.
doi: 10.2147/IDR.S370869 pmid: 35942309 |
[12] |
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria[J]. Biotechnol Bioeng, 2016, 113(5): 930-943.
doi: 10.1002/bit.25851 pmid: 26460902 |
[13] |
de la Fuente-Núñez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects[J]. Integr Biol, 2017, 9(2): 109-122.
doi: 10.1039/c6ib00140h URL |
[14] |
Junaid M, Thirapanmethee K, et al. CRISPR-based gene editing in Acinetobacter baumannii to combat antimicrobial resistance[J]. Pharmaceuticals, 2023, 16(7): 920.
doi: 10.3390/ph16070920 URL |
[15] |
Yao SG, Wu XY, Li Y, et al. Harnessing the native type I-F CRISPR-cas system of Acinetobacter baumannii for genome editing and gene repression[J]. Int J Antimicrob Agents, 2023, 62(5): 106962.
doi: 10.1016/j.ijantimicag.2023.106962 URL |
[16] |
Wang YH, Yang J, Sun XL, et al. CRISPR-cas in Acinetobacter baumannii contributes to antibiotic susceptibility by targeting endogenous AbaI[J]. Microbiol Spectr, 2022, 10(4): e0082922.
doi: 10.1128/spectrum.00829-22 URL |
[17] |
Guo TT, Yang J, Sun XL, et al. Whole-genome analysis of Acinetobacter baumannii strain AB43 containing a type I-fb CRISPR-cas system: insights into the relationship with drug resistance[J]. Molecules, 2022, 27(17): 5665.
doi: 10.3390/molecules27175665 URL |
[18] |
Meyer C, Lucaβen K, Gerson S, et al. Contribution of RND-type efflux pumps in reduced susceptibility to biocides in Acinetobacter baumannii[J]. Antibiotics, 2022, 11(11): 1635.
doi: 10.3390/antibiotics11111635 URL |
[19] |
Gil-Gil T, Laborda P, et al. Efflux in Gram-negative bacteria: what are the latest opportunities for drug discovery?[J]. Expert Opin Drug Discov, 2023, 18(6): 671-686.
doi: 10.1080/17460441.2023.2213886 URL |
[20] |
Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline[J]. J Clin Pharm Ther, 2022, 47(11): 1875-1884.
doi: 10.1111/jcpt.13787 pmid: 36200470 |
[21] | Kaviani R, Pouladi I, Niakan M, et al. Molecular detection of Adefg efflux pump genes and their contribution to antibiotic resistance in Acinetobacter baumannii clinical isolates[J]. Rep Biochem Mol Biol, 2020, 8(4): 413-418. |
[22] |
Karlapudi AP, Venkateswarulu TC, Tammineedi J, et al. In silico sgRNA tool design for CRISPR control of quorum sensing in Acinetobacter species[J]. Genes Dis, 2018, 5(2): 123-129.
doi: 10.1016/j.gendis.2018.03.004 pmid: 30258941 |
[23] |
Li HN, Wang XJ, Zhang YW, et al. The role of RND efflux pump and global regulators in tigecycline resistance in clinical Acinetobacter baumannii isolates[J]. Future Microbiol, 2015, 10(3): 337-346.
doi: 10.2217/fmb.15.7 URL |
[24] |
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, et al. Host - bacterial pathogen communication: the wily role of the multidrug efflux pumps of the MFS family[J]. Front Mol Biosci, 2021, 8: 723274.
doi: 10.3389/fmolb.2021.723274 URL |
[25] |
Paul D, Mallick S, Das S, et al. Colistin induced assortment of antimicrobial resistance in a clinical isolate of Acinetobacter baumannii SD01[J]. Infect Disord Drug Targets, 2020, 20(4): 501-505.
doi: 10.2174/1871526519666190426153258 URL |
[26] |
Roy S, Chowdhury G, Mukhopadhyay AK, et al. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection[J]. Front Med, 2022, 9: 793615.
doi: 10.3389/fmed.2022.793615 URL |
[27] | Darby EM, Bavro VN, Dunn S, et al. RND pumps across the genus Acinetobacter: AdeIJK is the universal efflux pump[J]. Microb Genom, 2023, 9(3): mgen000964. |
[28] |
Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp[J]. Antimicrob Agents Chemother, 2011, 55(3): 947-953.
doi: 10.1128/AAC.01388-10 URL |
[29] |
Marchand I, Damier-Piolle L, Courvalin P, et al. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system[J]. Antimicrob Agents Chemother, 2004, 48(9): 3298-3304.
doi: 10.1128/AAC.48.9.3298-3304.2004 URL |
[30] |
Damier-Piolle L, Magnet S, Brémont S, et al. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2008, 52(2): 557-562.
doi: 10.1128/AAC.00732-07 pmid: 18086852 |
[31] |
Coyne S, Rosenfeld N, Lambert T, et al. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2010, 54(10): 4389-4393.
doi: 10.1128/AAC.00155-10 URL |
[32] |
Naidu V, Bartczak A, Brzoska AJ, et al. Evolution of RND efflux pumps in the development of a successful pathogen[J]. Drug Resist Updat, 2023, 66: 100911.
doi: 10.1016/j.drup.2022.100911 URL |
[33] |
Chen WZ, Zhang YF, Yeo WS, et al. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system[J]. J Am Chem Soc, 2017, 139(10): 3790-3795.
doi: 10.1021/jacs.6b13317 URL |
[34] |
Wan P, Cui SY, Ma ZB, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system[J]. Infect Drug Resist, 2020, 13: 1171-1178.
doi: 10.2147/IDR.S244885 URL |
[35] |
Dong HS, Xiang H, Mu D, et al. Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli[J]. Int J Antimicrob Agents, 2019, 53(1): 1-8.
doi: 10.1016/j.ijantimicag.2018.09.017 URL |
[36] | Zhu YM. Advances in CRISPR/Cas9[J]. Biomed Res Int, 2022, 2022: 9978571. |
[37] |
Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1): 132-141.
doi: 10.1101/gr.162339.113 pmid: 24253446 |
[38] |
Pattanayak V, Lin S, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839-843.
doi: 10.1038/nbt.2673 pmid: 23934178 |
[39] |
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, et al. CRISPR-cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance[J]. ACS Infect Dis, 2023, 9(7): 1283-1302.
doi: 10.1021/acsinfecdis.2c00649 URL |
[40] |
Prensky H, Gomez-Simmonds A, Uhlemann AC, et al. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost[J]. Mol Syst Biol, 2021, 17(3): e9913.
doi: 10.15252/msb.20209913 pmid: 33646643 |
[41] |
Tagliaferri TL, Guimarães NR, Pereira MPM, et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae[J]. Front Microbiol, 2020, 11: 578.
doi: 10.3389/fmicb.2020.00578 pmid: 32425894 |
[1] | GAO Deng-ke, MA Bai-rong, GUO Yi-ying, LIU Wei, LIU Tian, JIN Ya-ping, JIANG Zhou, CHEN Hua-tao. Establishment of Quaking Knockout Mouse Embryonic Fibroblast Cell Line Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2024, 40(2): 65-72. |
[2] | ZHANG Hong-min, LONG Wen, LAO Xiao-qing, CHEN Wen-yan, SHANG Xue-mei, WANG Hong-lian, WANG Li, SU Hong-wei, SHEN Hong-ping, SHEN Hong-chun. Construction of Pmepa1 Knockout TCMK1 Mouse Renal Tubular Epithelial Cell Line Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2024, 40(2): 73-79. |
[3] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[4] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[5] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[6] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[7] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[8] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[9] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[10] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[11] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[12] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[13] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[14] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[15] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||